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Abstract—Failing to account for the set of links affected by
a simultaneous dependent failure during the re-computation of
the routing table entries leads to traffic losses until all failed
links have been accounted in the re-computation of these entries.
Instead, if the router learns about the existence of Shared Risk
Link Groups (SRLGs) from the arriving pattern link state routing
information, then decisions regarding SRLG failure can be taken
promptly to avoid successive re-computations of alternate shortest
paths across the updated topology. In this paper, we propose a
mechanism to improve the router recovery time upon occurrence
of topological link failures by detecting and identifying the
existence of SRLGs from link state routing information ex-
changed in the routing domain. The proposed model first groups
into events individual Link State Advertisements (LSAs) issued
by different network nodes (routers) upon link state change;
then, it combines this information to find temporal dependence
among members of event groups. It further introduces a physical
model interpretation derived from the application of the Weibull
distribution, to determine the error on the joint probabilities
of events resulting from the finite observation sample. This
association allows binding the dependence of the identified groups
comprising one or more events (associated to SRLG) on the
corresponding estimated failure rate. Our simulation results show
that the proposed technique to locally detect and identify SRLGs
performs sufficiently well to trigger with enough confidence
simultaneous routing table updates from the arrival of a reduced
set of LSAs (ideally one).

I. INTRODUCTION

The idea of introducing a cognitive component as part
of the control system of communication networks has been
introduced recently to allow network elements such as routers
to learn about their own behavior and environment over time,
to better analyze problems, to adapt their decisions, and to
tune their execution. By means of this component, nodes
are expected to improve their performance and increase the
total network utility without any external intervention [6],
[10], [18]. Cognitive networks generally use various machine
learning techniques to enable the routers to learn online about
new network behavior under variable traffic patterns and
topological events. The concept behind this idea is to make
the network responsive enough to adapt to newer scenario
(closed-loop control) instead of requiring manual intervention
for the configuration of each steps implied by the observation-
analysis-decision-execution sequence. Different kinds of ap-
plications that would benefit of machine learning have been

studied over the past few years like traffic anomaly detection
and intrusion detection [12], as well as traffic-informed re-
routing [16], [17].

In this paper, we propose to improve the router recovery
time upon simultaneous occurrence of topological link failures
by detecting and identifying the existence of shared risk
groups (SRGs). The detection and identification of SRG is
performed by applying machine learning technique to Link
State (LS) routing information. SRGs define groups of network
resources such as links or nodes that share a common source of
failures and are thus likely to fail simultaneously. For example,
two distinct logical links routed through the same optical
channel or two physical links carried over the same duct
would fail altogether in case of optical channel or duct failure,
respectively. When groups of network resources correspond
to links, SRGs are referred to as Shared Risk Link Groups
(SRLG). Their properties can be summarized as follows: i)
a link belongs at least to one SRLG, ii) a link belongs to
more than one SRLG if and only if it crosses (at least) one
of the resources covered by each of these SRLGs, iii) pair of
links belonging to the same SRLG can belong individually to
other (one or more) SRLGs. In this context, a set of one or
more links fail simultaneously when their associated shared
risk occurs.

A router distributes the state of its interfaces and adjacencies
(link state) by flooding this information throughout the routing
domain. The collected link states of all routers and networks
forms the Link State DataBase (LSDB). Flooding refers to the
process that distributes and synchronizes the LSDB between
routers. Link State Update (LSU) packets provide the mecha-
nism for routers to flood link states to their adjacent nodes (one
hop further away from their point of origination). Each LSU
packet may contain a set of distinct Link State Advertisements
(LSA). When a link failure occurs, the LS routing protocol
initiates advertisement of LSUs indicating link state change by
the LSA(s) they contain. SRLG failures often trigger multiple
topological link failures and all routers in the network take
individual decision regarding each of the advertised LSA(s).
Instead, if the router learns about the existence of SRLGs from
the time sequence of LSAs, then decisions regarding SRLG
failure can be taken promptly and simultaneously to avoid
additional delay for choosing alternative shortest-paths (across
the updated topology).978-1-4244-8953-4/11/$26.00 c© 2011 IEEE



A. Our Contribution

In the literature, the detection and identification of SRLG
is considered to be of prime importance in optical and in
IP/Multi-Protocol Label Switching (MPLS) networks [5]. In
these environments, SRLG information is used as part of
the Constraint-based Shortest Path First (CSPF) algorithm
for traffic engineered route computation (prior to data path
establishment) in order to maximize link disjointness of data
paths and so decrease their common failure probability [1],
[3]. A similar observation can be applied to IP Fast ReRouting
(FRR) as analyzed in [15]. In this case, simultaneous failures
also results into unreachable address prefixes and invalidates
pre-computed or post-computed recovery paths (when they do
not account for simultaneous link failures).

The present paper focuses on connectionless forwarding en-
vironments where each node computes its routing table entries
independently and performs forwarding decision individually
for each datagram (i.e. data path does not require end-to-end
provisioning before forwarding can take place). At first glance,
it might seem that one can simply look at the current network
configuration to derive the SRLG information. However, in
reality, the IP network link topology is often constructed on top
of different optical networks, i.e., IP links are carried over op-
tical channels and links belonging to different optical network
providers leasing fibers passing sometimes through the same
physical duct. Moreover, optical networks are often supporting
multiple IP networks. In this context, SRLG disjointness of
forwarding paths1 is a hard problem: i) two forwarding paths
are disjoint with respect to an SRLG if and only if at most
one of them covers this SRLG (i.e., if and only if one of
these paths crosses one of the links belonging to that SRLG),
and ii) two forwarding paths are disjoint with respect to a set
of SRLGs if and only if the sets of SRLGs they individually
cover are fully disjoint. As forwarding entries are derived from
routing table entries computation, simultaneous link failures
resulting from occurrence of a shared risk can trigger multiple
successive routing table entries re-computation with current
link state protocols. Each of these re-computations account for
each link failure taken individually. Failing to prune the set of
links involved by the SRLG failure during routing table entries
re-computation leads to longer recovery time and thus, higher
magnitude of packet losses compared to the situation where
the set of links (associated to the SRLG failure) results in a
single step for the re-computation of all routing tables entries
affected by the failure. Indeed, failing to take into account the
set of links affected by the SRLG failure leads to traffic losses
until all failed links have been accounted in the re-computation
of the routing table entries. Instead, if the router learns about
the existence of SRLGs from the arriving pattern of LSAs,
then decisions regarding SRLG failure can be taken promptly
to avoid successive re-computations of alternate shortest paths
across the updated topology.

For this purpose, in this paper, we develop a learning model

1A forwarding path is defined as an acyclic alternating sequence of IP
routers and links from source to destination

Fig. 1. LSA sequence for different link failures

and device a mechanism to locally detect and identify SRLGs
in the network to significantly reduce the router recovery time
upon failure occurrence that affects simultaneously more than
one link. As depicted in Fig.1, temporal distance between
successive LSA arrival patterns is used to statistically learn
about the possible existence of SRLGs. By processing this
information, we subsequently predict their occurrence so as
to prevent successive shortest path tree re-computation upon
shared-risk failure (that affects multiple links simultaneously).
The result of the SRLG detection and identification phase can
thus be used to trigger simultaneous routing table updates from
the arrival of a reduce set of LSAs (ideally one). Evaluation of
the gain in terms of recovery time resulting from the trigger
of simultaneous routing table updates shows promising results
(in terms of traffic losses reduction) depending on the SRLG
failure scenario and topology properties.

The proposed approach relies thus on processing the in-
coming LS routing information to derive the set of links
that show a temporal dependence. Our approach does not
consist in maintaining the set of SRLGs per path and enforce
path disjointness at computation time but instead maintain
the set of SRLG associated to each link and prune the set
of links from the LSDB before computation. The pruning
operation consists in disabling from the LSDB, the set of
links identified as belonging to a set of SRLGs. Failure of a
given SRLG is declared once a small subset of member links
belonging to that SRLG is early detected as being subject to
a state change. This approach thus does not ”enforce” path
disjointness but mitigates effects of simultaneous link failures
upon detection of a small subset of its affected members
identified as belonging to the same SRLG. This identification
is obtained by inferring the links belonging to SRLGs from
incoming LS routing information.

The rest of this paper is organized as follows. We first
outline related work in the domain addressed by this paper
in Section II. Section III provides a detailed description of the
proposed learning model and related algorithms. Section IV
details the simulation scenarios and procedures developed to
produce numerical results. These results obtained by applying
our learning model are detailed in Section V that outlines
the key findings of our SRLG detection and identification
technique. Finally, Section VI concludes this paper.

II. RELATED WORK

To the knowledge of the authors, no method since so far has
been introduced to detect SRLG from the temporal properties
of the network control traffic such as link state protocol data.
The SRLG information relies on manually configured local



entries that describes the underlying infrastructure layout [14].
These entries are then advertised to the entire network by asso-
ciating an additional SRLG identifier attribute to the link state
advertised by the routing protocol. This SRLG information
is then used for SRLG disjoint path computation to improve
the network protection and restoration mechanism. The other
method commonly used to detect SRLG is based on topology
and geographical location of physical nodes [19]. However,
manually configured entries and geographical information are
often difficult to access for legacy equipment which are already
deployed in the field. In other words, none of these methods
performs online detection and identification of SRLGs but
instead rely on the a-priori knowledge of this information.

In this paper, we introduce a machine learning technique
to process incoming LS routing information and analyze them
against already available LS routing data in order to detect
SRLGs. Though there has been some attempts to analyze LS
routing information for SRLG identification [8] [9], they never
considered the statistical information embedded in this data to
detect distinct SRLGs comprising common member links (e.g.
a given link part of two distinct SRLGs).

Henceforth, in [4], we have introduced a state space based
Bayesian network model that enables a more complete and
accurate probabilistic detection and identification of SRLGs.
In terms of SRLG detection, the results obtained by means of
this model are promising. However, [4] does not considered
the temporal dependence among LSAs to further enhance the
probabilistic prediction accuracy. In this paper, we introduce a
novel algorithm to enhance the probabilistic Bayesian network
model of [4] in order to detect and to identify SRLGs
by considering the dependency among the inter-arrival time
sequences of LSAs, in addition to their occurrence rate.

III. MODEL

In this section, we introduce the learning model for de-
tecting and identifying SRLGs. We then describe the decision
model used in association to the detection and identification
phase for early prediction of SRLG failure occurrence (from
the incoming routing update information). Before giving fur-
ther details on the learning model used as SRLG detection and
identification technique, we provide an example of network
that will help us to better understand the proposed algorithm.
Fig.2 shows a typical network topology with 6 nodes (routers)
and 9 links (A, B, C, D, E, F, G, H, and I).

In the OSPF context, for instance, neighboring routers
periodically exchange Hello messages to establish and main-
tain relationships (ensure two way communication) with their
neighbors [11]. If a router does not receive any Hello message
from its neighbor within a period of time equal to the Rou-
terDeadInterval (that is of the order of seconds), it assumes
that the link between itself and the neighbor to be down. The
detecting router then originates a set of one or more new router
LSA that describes the topological link state change(s). Once
originated by the detecting router, this set of LSAs is reliably
disseminated (flooded) by means of LSU message one hop
further away from their point of origination. At each hop, a

Fig. 2. Network Topology

new LSU is generated that may contain the LSAs of several
other routers. Any distant router, upon receiving new LSAs,
installs them in the LSDB. Using the topological information
of the LSDB as input, a router computes the shortest-path
tree using itself as the root yielding a set of routes stored
in the Routing Information Base (RIB). Forwarding entries
are then derived from the RIB, stored in the Forwarding
Information Base (FIB), and subsequently used to perform
individual forwarding decision on incoming datagrams.

Multiple LSAs for the same link failure can be initiated
by different routers. However, observant router can discard
those repeated information and consider the first router LSA
reflecting the topological change involving a particular link,
and thus the LSU that comprises this LSA. With multiple
link failures, the arrival time sequence defined by the series
of received LSAs is depicted in Fig.1 that shows a typical
LSA sequence for the same network with links D, B and H
failing. To identify SRLGs, it is then required to find temporal
dependence among LSA sequences. We start our algorithm by
processing the sequences of arriving LSAs as time sequences;
then, after determining their temporal locality, the algorithm
groups LSAs into sets and declare their constituting elements
(links) as part of the same SRLG. For example, links (B,
A), (C, D, B), (A, H, C) and (A, B, D) forms four distinct
SRLGs from Fig.1. We next form a probabilistic model to
represent SRLGs in a more realistic fashion. Indeed, the
temporal locality between the received LSAs is assumed to
reflect the simultaneous failure of the links advertised in LSAs
contained in the observed LSUs.

A. Learning Model: SRLG Detection and Identification Phase

1) Grouping Individual Events: In this phase, we construct
a data structure that stores the detected groups of individual
events. For each event (a received LSA), a list is maintained
that determines its temporal dependence to other events that
have been observed in the entire known history of events. For
example, suppose that the LSA for link A has arrived at time
t and we are to make a decision about which other links can
be part of an SRLG containing A as a member link. We start
the algorithm by grouping the event sequences as follows. We
initially start with a time threshold which is referred to as the
window threshold. The start time can be set to any reasonable



time derived from the routing protocol constants (5 seconds in
our case as determined by the MinLSInterval, the minimum
time between distinct originations of any particular LSA2).
This choice has on the other hand little impact on the adaptive
algorithm. The window threshold is then adaptively modified
as follows. We define Tmin as the minimum value of timing
threshold.

We initialize the algorithm by setting the threshold time
(Tth) to Tmin. When the first LSA arrives, the grouping
algorithm starts; then, two cases are possible:
• Case 1: no more LSA arrives within Tmin: the algorithm

stops further grouping and keeps Tth = Tmin.
• Case 2: N(≥ 1) LSAs arrive within Tmin: the al-

gorithm increases the threshold time Tth as follows:
Tth = Tmin +

(
Tmin −

∑N
j=2 Tinter−interval(j,j+1)

)
. In

this formula, the term
∑N
j=2 Tinterinterval(j,j+1) denotes

the inter-arrival time between the jth and the (j + 1)th
arrival.

In the second case (i.e., when multiple arrivals of LSAs
are observed), once the new threshold time Tth value has
been computed and when the algorithm waits for further
LSA arrivals during the added threshold time, two different
scenarios can occur:
• Case 2a: No further LSA arrives as Tth elapses: If∑N

j=2 Tinterinterval(j,j+1) < Tmin, then Tth is set to
Tmin; otherwise, Tth =

∑N
j=2 Tinterinterval(j,j+1) and

the algorithm stops grouping LSAs. The current Tth value
is stored for the next phase of grouping.

• Case 2b: N(≥ 1) LSA arrives within the extended Tth:
Tth is further extended following the process described
above for the second case (when N LSAs arrives within
Tmin) and the algorithm further waits for new LSA
arrivals for this extended period.

The algorithm continues till there are no new LSA arrivals
within the extended Tth period. Case 2a provides a mean for
the algorithm to adaptively reduce the threshold time Tth value
when there are no LSA arrivals within an extended Tth period.
Case 2b ensures that the algorithm can adaptively increase
the Tth period if more LSA arrivals are observed during the
extended Tth period.

2) Time Dependence between Event Groups: In our ex-
ample shown in Fig.1, links (B, A), (C, D, B), (A, H, C)
and (A, B, D) forms individual event groups. To determine
SRLG with link A as a group member, we next list out all
the member links that share at least once the same event
group as link A. Following our example, that list becomes
(B, C, H, D). We next form a data structure containing all
combinations possible among these links. In our example, four
types of groups exist, each type is determined by the number
of elements the group contains. In the first type, we consider
groups of single element, i.e., (B), (C), (H), (D). The second
type consists of all possible combinations with two elements

2Thus, two instances of the same LSA may not be originated within the
time period MinLSInterval

at a time, i.e, (B, C), (B, H), (B, D), (C, H), (C, D), (H, D).
The third type consists of combinations with three elements,
i.e., (B, C, H), (B, C, D), (B, H, D), (C, H, D) and finally the
last type consists of the group containing all elements, i.e., (B,
C, H, D).

The next task is to find the temporal dependence between
the individual events containing A as single element and the
event groups containing A as element. For the algorithm to run
efficiently, we also need state variables for each of these event
groups that can be updated progressively without keeping the
entire history of data. The state variables associated with each
event group are listed below:

1) Ni: the number of events observed that include link li,
where the integer i (1 ≤ i) indexes the concerned link.
For convenience, we will identify each link (A, B, C,
. . .) by its link number i (1 ≤ i ≤ P ), assuming that
there is a total of P links in the network.

2) Ni,j,k: the number of events observed that include link
li as part of an event group comprising j elements (1 ≤
j ≤ P ), where event groups are enumerated (per number
of elements j) by the integer k, k ≥ 0. For example, if
j = 2, k can index the event group (B, C) or (B, D),
and if j = 3, k can index event group (B, C, D) or (B,
C, H).

3) σ2
last,i,k: each time an event that include link li is

observed, this value is updated as follows σ2
new =

σ2
old+(Tcurrent,i−Tlast,i,k)2. In this formula, Tcurrent,i

is the current time of observation of an event group
that includes link li. Tlast,i,k is the last time at which
an event group k including link li has been observed
(as part of an LSA sequence). The absolute time of
observation of a given event group k is the mean value
of the arrival time of its individual component elements.
For instance, the absolute time of observation of the
event group (B, C, D) is the mean value of the arrival
time of components B, C, and D.

Using these variables, the coefficient αi,j,k between each in-
dividual event including link i and an event group k including
j elements, is defined as follows:

αi,j,k =

{
Ni,j,k

Ni

δt
σ2
last,i,k

for observed events

0 otherwise
(1)

In Eq.(1), as the fraction Ni,j,k

Ni
is ≤ 1, we can safely assume

that it provides an estimation of the probability of occurrence
of joint event i together with event group(s) k containing j
elements. In this equation, the fraction δt

σ2
last,i,k

measures the
temporal dependence between events including link li: higher
the value of this fraction, higher the temporal dependence
between joint events including link li and the event group(s)
k containing j elements. The value δt is introduced to give
to the coefficient α the dimension of a rate of observation
per observation unit δt. As a result, the coefficients αi,j,k are
≤ 1, where each coefficient αi,j,k measures the occurrence
rate of dependent events including link li with event group(s)
k containing j elements.



Processing of Eq.(1) is performed as follows. To unobserved
event groups k including event i, we assign the value 0 to their
corresponding coefficient. Whenever a new sequence of LSAs
arrives and an event group k is subsequently identified using
the procedure described in Section III-A1, the Tlast,i,k value
associated to the currently identified event group is updated.
Upon observation of a given link li as part of the identified
event group k, the value Ni is updated. If this link is included
in the event group k, then the values Ni,j,k and σ2

last,i,k are
also updated.

3) Matrix Representation: We introduce a matrix represen-
tation of the event groups dependencies. This representation
provides a structure that compacts the data storage and simpli-
fies the search operation during the computation process. For
this purpose, we define a (P ×P ) matrix, where P represents
the number of links, as follows:

The elements of this matrix correspond to vector of weight-
ing factors ωi(j, k) introduced to weight the measured coef-
ficient αi,j,k. Each factor ωi(j, k) is defined as follows: i is
the row number associated to link li (each element of a given
row i, 1 ≤ i ≤ P , lists the event groups including link li), j is
the column number where each column identifies event groups
containing exactly j elements (1 ≤ j ≤ P ), and k indexes a
given combination of j elements (links) containing the element
i, where the total number of combinations per matrix element
equals to

(
P−1
j

)
. In other terms, each factor ωi(j, k) weight

the observed coefficient αi,j,k of link li with event groups
k of exactly j elements (the number of links identified as
SRLG member elements). For instance, the factor ω1(2, 1)
weights the observation of link 1 (i = 1) with event groups
including two SRLG member elements (j = 2) as part of the
first combination k (k = 1) of two elements. All combinations
of links are arranged in cyclic order and are numbered with k
accordingly once i and j are specified.

4) Weighting Factors: The weighting factors ωi(j, k) are
computed as follows. We define the weighted coefficients

αi,j =
∑
k

ωi(j, k) αi,j,k (2)

Each weighted coefficient αi,j represents the combined value
for each cell of the matrix. For normalization purposes, we
impose that the weighting factors ωi(j, k) verify∑

k

ωi(j, k) = 1. (3)

Each coefficient αi,j,k measures the occurrence rate of event
i when observing an event group k of j link elements.
Therefore, each term ωi(j, k) αi,j,k in Eq.(2) represents the
individual contribution of the observation to the occurrence
rate of joint events i together with any event group containing
exactly j elements as member links of the corresponding
SRLG.

As αi,j represent combined value of dependence coefficient,
we have the additional condition imposed on αi,j values:

αi,j ≤ Πi,j (4)

∑
j

αi,j ≤ Πi (5)

∑
i

αi,j ≤ Πj (6)

Eq.(4)–(6) specifies that the sum of the normalized αi,j,k in
every element (cell), line, and column of the matrix is upper
bounded by value Πi,j , Πi, Πj respectively. The Πi,j values
are derived from the assumption that any individual SRLG
failure rate is determined by the failure rate of their associated
two-parameters Weibull distribution [13]. Indeed, the Weibull
distribution is commonly used to model and estimate the
characteristics and behavior of equipment and systems such
as their reliability or failure probability at specific time, and
their failure rate variation over time. Each distribution is
characterized by the scale parameter b, the shape parameter
c, and by its Probability Density Function (PDF) that is given
by

f(x; b, c) =

{
c
b

(
x
b

)(c−1)
e−( x

b )
c

x ≥ 0
0 x < 0

(7)

The coefficient αi,j,k being computed from a finite sample
of observation, the occurrence rate of joint events (involving i
as part of event groups k) does not account for the contribution
to the occurrence rate that these individual observations can
not explain. This difference explains the inequality of Eq.(4).

For inequalities Eq.(5)–(6), additional boundary conditions
are to be derived. The second boundary condition takes into
account that, starting from j = 1, the error between event
groups of j and j+µ elements is bounded by the µ1, . . . , µth
moments of the individual Weibull distribution [13]. Thus, the
error for each column j is bounded by the equation∑

i

Eji = Πj , (8)

where Eji is the jth moment of the Weibull probability
distribution for link li. In practice, if we use only the first
moment of the individual Weibull distribution, it simply means
that the error between each column j is determined by the
mean distance between observations of link i in between event
groups of j and j+ 1 elements. The third boundary condition
states that ∑

i,j

(Πi + Πj) = Π , (9)

This third condition means that the observed failure rate can’t
exceed the network failure rate. Therefore, the inequalities of
Eq.(4)–(6) explains the difference between the measured and
the actual occurrence rate (bounded by Π).

5) Physical Model Interpretation: To estimate this differ-
ence, referred to as the error contribution εi,j , we introduce a
physical model interpretation. This model will in turn enable
to enforce the equality condition in order to solve all the
factors ωi(j, k) such that Eq.(3) is verified. To construct this
model, we assume that the individual link failure probability
follows a Weibull distribution [13]. For link li (1 ≤ i ≤ P ),




ω1(1, 0) (ω1(2, 1), ω1(2, 2), . . . , ω1(2, P )) (ω1(3, 1), ω1(3, 2), . . . , ω1(3, CP−1j )) . . .

ω2(1, 0) (ω2(2, 1), ω2(2, 2), . . . , ω2(2, P )) (ω2(3, 1), ω2(3, 2), . . . , ω2(3, CP−1j )) . . .
...

...
...

...
ωP (1, 0) (ωP (2, 1), ωP (2, 2), . . . , ωP (2, P )) (ωP (3, 1), ωP (3, 2), . . . , ωP (3, CP−1j )) . . .



let Fi(x) = Pr(Xi ≤ x) be the probability of failure up
to time x, R(x) the reliability (or survival) function, and
H(x) the hazard (or instantaneous failure) rate function. From
the distinct observation of each link failure, we construct the
individual Weibull distribution characterized by its Weibull
parameters b (scale parameter) and c (shape parameter), and
its representative moments. A set of links composed by j
elements and belonging to the same SRLG survive as long as
none of its j components has failed. However, as the assump-
tion of independently failing components does not apply in the
present context, i.e., failure times of the links are dependent,
we need to introduce a multivariate Weibull distribution that
is not simply the product of their marginal distributions. By
defining the power transformations Xi = Y cii , i = 1, . . . , p,
the multivariate Weibull distribution introduced in [2] has the
joint survival distribution R(y) with parameters κ ≥ 0 and
ν > 0, and individual failure rate λi defined as

λi ≡ λ(yi) =
ci
bi

(
yi
bi

)(ci−1)

> 0 (10)

R(y) = exp

{
κν −

[
κ+

p∑
i=1

λiy
ci
i

]ν}
(11)

Using this physical model interpretation, the error contri-
bution εi,j accounts for the difference between the observed
occurrence rate that can be explained from the observation of
joint events including link li and the rate that results from
the link failure dependency that is not observable from our
finite observation sample. Once these multivariate Weibull
distributions are evaluated, we can estimate the errors resulting
from the finite sample of observation used to derive the αi,j,k
coefficients as follows:

εi,j =
∑
k

(Hi,j,k − αi,j,k) , (12)

where Hi,j,k is the instantaneous failure rate at time x as-
sociated to the joint survival function R(x) = Pr(X1 >
x, . . . ,Xj > x). We can therefore modify the Eq.(4)–(6) as
follows:

αi,j + εi,j = Πi,j (13)∑
j

(αi,j + εi,j) = Πi (14)

∑
i

(αi,j + εi,j) = Πj (15)

∑
i,j

(Πi + Πj) = Π (16)

The evaluation of this system of equations Eq.(13)–(16)
requires the computation of the error contribution terms εi,j
in order to solve all the factors ωi(j, k) such that Eq.(2)–(3)
are verified.

B. Decision Model: SRLG Early Identification

In this phase, we compare the value of ω with a predefined
threshold ωth. For a particular link i, we search through matrix
the row of the column (associated with that link) until we
hit all zero weighting factors ωi(j, k). We then search for
the highest weighting factor within the vector positioned just
before the vector of zero weighting factors. We declare all the
member links of the corresponding factor as members of an
SRLG including link i.

IV. SIMULATION

Our experimental setup is based on GEANT2 network
topology [7] which comprises 53 physical links. We create a
logical topology of 80 links on top of the GEANT2 physical
topology and accordingly define SRLG with logical links
passing through the same physical link. We generate the time
sequence of input LSA for such a network using two different
scenarios as described in Section IV-B. We use the MATLAB
numerical computing environment and programming language
to generate these time sequences and then, we run our algo-
rithm on these time sequences to validate our model.

A. Simulation Procedures

The numerical evaluation of the algorithm as described in
Section III is performed as follows:
• The occurrence rate of dependent link failure events
αi,j,k are computed iteratively from the observed data
using Eq.(1), where αi,j,k is dependent on Ni, Ni,j,k
and σ2

last,i,k. If a new SRLG is formed due to a change
in the topology involving link li and the correspond-
ing member links of k event groups, then the counter
Ni,j,k is incremented. Moreover, a small finite value of
(Tcurrent,i − Tlast,i,k)2 is added to the otherwise zero
valued σ2

old which will slowly increase the values of
αi,j,k as the number of observed occurrences of such
simultaneous failures increases. Thus, the algorithm is
able to automatically detect and identify the presence of
new SRLGs due to a change in the topology. Similarly,
if an existing SRLG is seize to exist, the algorithm will
automatically reduce the value of the corresponding αi,j,k
to reduce the eventual probability of its existence.

• The boundary parameters Πi,j are computed using Eq.(7),
assuming that any individual SRLG failure is determined



by the failure rate (see Eq.(10)) of its associated two-
parameters Weibull distribution. Appropriate distribution
fitting function is used to estimate the scale (b) and shape
(c) parameters of each Weibull distribution. Moreover,
for each j such that 1 ≤ j ≤ P , the jth moment of
each Weibull distribution is computed using the moment
generating function [13], which enables the computation
of parameters Πj by means of Eq.(8).

• To compute the error contributions εi,j using Eq.(12), the
joint survival function R(y) is generated using Eq.(11),
where bi and ci represent the parameters of the individual
Weibull distribution associated to each link failure distri-
bution. In Eq.(11), the value of p is set to the number
of individual Weibull distributions to be considered (in
the matrix representation, p is taken to be equal to the
value of j for the evaluation of the weighting factors ω).
Moreover, for this equation, we set ν = 1, 9 as we derived
from numerical execution that this value provides for the
lowest SRLG prediction error.

• The mean joint failure rate, the joint probability as well
as the mean value of joint events are computed by
performing discrete multi-variable integration over R(y)
(see Eq.(11)) so that events corresponding to the link
failures are within a predefined threshold (th) from each
other. The result of this integration (see Eq.(17)) yields
ȳp, the mean distance between failures for the joint event
of j link failures within a time period delimited by the
predefined threshold th.

ȳp =

∫ ∞
0

∫ yp+th

yp−th
. . .

∫ yp+th

yp−th
ypR(y)dy1dy2 · · · dyp

(17)
Using Eq.(17), the analytical failure rates are given by

Hi,j,k =
1

ȳp
(18)

• The set of equations Eq.(2), Eq.(3), Eq.(13)–(16) are used
to compute all the weighting factors ω. However, only
those factors that are related to the observed link failures
are considered. This resolves the problem of having
more variables than equations when j ≥ 2. Moreover,
if any nonzero ω value exists that does not correspond
to an observation within the current phase (of SRLG
observation) by applying the LSA grouping algorithm,
these ω values are first scaled to incorporate appropriate
weighting.

B. Simulation Scenarios

As obtaining real failure data set is a difficult task (due
to the fact that failure events are usually not disclosed), we
create a model to generate SRLG failure data set that closely
represents the real simultaneous failure scenario. For this
purpose, we assume that the link failure or any SRLG failure
follows a Weibull distribution (see Eq.(7)), where, b is the
scale parameter and c is the shape parameter. When c > 1, the
failure rate increases with time, which resemble the realistic
network scenario. For our purpose, we set c = 1.5 and b to a

very higher value to account for the fact that network failure
are usually sparse events.

Moreover, we distinguish two cases depending on the dom-
inant delay factor in the origination and propagation of LSAs
after the occurrence of time dependent failures (resulting from
the topological dependence):
• Case 1: Hello message and RouterDeadInterval detection

dominates. Suppose that two distinct LSAs for two dif-
ferent links associated to the same SRLG, are originated
by two different routers (in particular, when these LSAs
are flooded as part of different LSUs). The maximum
delay these LSAs can experience at the origin is due to
the desynchronization of Hello messages. Indeed, these
periodic messages are originated independently by each
router within a time interval that ranges in the order of
seconds (typical values range from 1 to 10 seconds).
At the higher inter-arrival delay between two LSAs
resulting from the same SRLG failure, the Hello interval
desynchronization dominates the propagation or queuing
delay of LSAs. So for higher inter-arrival delay, we can
assume a uniform distribution for the LSA inter-arrival
time because the origination of Hello messages by routers
is completely random and independent between routers.

• Case 2: Queuing, Transmission, and/or Propagation domi-
nates. When the desynchronization due to Hello messages
is negligible, LSAs propagation and queuing delays dic-
tate the cause for delay variance. Due to the accumula-
tion of multiple mutually independent random queuing
delays, we can assume without loss of generality, that
the inter-arrival time between LSAs are memory less
and demonstrate exponential distribution. Our simulations
show that the assumption of exponential accumulated
delay distribution has negligible effect on the results
presented in this paper. We test long tailed distributions
that have power law decay to verify that different inter-
arrival time distributions show minimal effect on the final
result. This is due to the fact that failures are rare events
that are usually separated by a large amount of time.
Generally, the inter-failure occurrence time is much larger
than the inter-arrival time between two LSAs for the same
SRLG failure to create any impact whatsoever. For the
propagation delay however, we use realistic values that
correspond to the GEANT2 network topology.

With this specifically generated input data file that include
the time sequences of LSA arrivals, we run the LSA grouping
algorithm as described in Section III-A1. Once the LSAs are
grouped, we run the proposed learning model as well as the
decision making algorithm to predict the existence of SRLGs.
We compare our results from the prior knowledge of SRLGs
from our assumed network topology and compute the amount
of false positive and true negative the algorithm generates.

V. SIMULATION RESULTS

In this section, we detail the simulation results obtained
using the GEANT2 network topology (except when stated
otherwise). Before presenting these results, we provide here



Fig. 3. Value of weighting factor ω

below some intermediate results like the computation of the
weighting factors ωi(j, k) and the computation of the occur-
rence rate as measured by the α coefficients in order to get
better insight regarding the execution of our algorithm and its
accuracy.

Fig.3 provides the 3-dimensional plot of the computation
of the ωi(j, k) values for link 1, i.e. i = 1, forming SRLGs
with two member links, i.e., j = 2. The x-axis indicates
the number of two link combinations, k, with link 1 as one
of its member links (for instance, (1,2), (1,3), (1,4), and
(1,5)). The y-axis indicates the iteration time epoch of the
algorithm which is incremented linearly with every arrival of
an SRLG group indication. Thus, the z-axis provides the value
of ωi=1(j = 2, k) with respect to the iteration time epoch of
the algorithm and event group combination k when i = 1
and j = 2. Here, we assume that link 1 forms 4 SRLGs
(comprising two member links) with 4 distinct links; thus, the
number of two link combinations k = 4. From Fig.3, we can
observe that only the values of k = 1, 2, 3, 4 have a significant
contribution to the weighting factors ω1(2, k) and as the time
progresses these contributions stabilize towards the theoretical
values they should attain to represent their occurrence proba-
bility (i.e., 0.25). Note that the same type of figure has been
generated for higher values of the number of member links j.
However, with higher number of member links per SRLG, as
a smaller number of event group combinations k show actual
contribution to the ω values, it is hardly possible to observe
them in such figure.

Fig.4 provides the 3-dimensional plot of α value (which
measures the occurrence rate of dependent failure events) with
respect to time and j, the number of member links per SRLG.
As we have SRLGs with five member links (j = 5) that
include link 1 (i = 1), the coefficient αi=1,j should have non-
zero values for j = 1, . . . , 5. For better clarity, we ignored
the values of j > 10 as all α values are equal to zero for
these values of the parameter j. Again, we can observe that as
time progresses the α value converges to the rate of dependent
failure events (for our example, this is 0.0003 failures per day).
The algorithm converges to this rate pretty fast for j = 2 and
j = 3. However, as shown in Fig.4, the prediction accuracy

Fig. 4. Value of coefficient α

Fig. 5. Percentage of false positive and true negative with number of failure
iterations (disjoint SRLGs)

decreases as j increases.
Fig.5 plots the percentage of false positive, the percentage

of true negative, and the total prediction error as the number
of failures per SRLG increases. These percentage values are
computed by averaging the percentage values obtained from
multiple random experiments performed after using a certain
number of failure data for each SRLG to learn the state space.
This experiment was carried over a set of disjoint SRLGs
where the member links of each SRLG are not part of any
other SRLG.

We follow the same procedure for the experiment when
SRLGs share common member links. Fig.6 provides the
results for multiple SRLGs having one common member link.
This figure plots the results obtained when considering one
common member link between two SRLGs. We can easily see
that the performance degrades due to the interconnection be-
tween SRLGs. It can be observed that the algorithm produces
both false positive and true negative more often when SRLGs
share common member links. However, the percentage of false
positive and true negative decrease as the number of failures
per SRLG increases. This decrease in percentage can be
explained as follows: as the algorithm gathers more statistical
input regarding different SRLG failures, it progressively learns
how to better predict future occurrences. We further increase
the number of common member links between SRLGs from
1 to 5. From Fig.7, we observe further degradation of the



Fig. 6. Percentage of false positive and true negative with number of failure
iterations (SRLGs with one common link)

Fig. 7. Percentage of SRLG prediction error with the number of common
member links per SRLG

prediction error when this number increases. However, as the
number of failure iterations increases, the prediction error
becomes smaller than 10 percent when SRLGs have 5 member
links in common.

Fig.8 shows that the variation of network delay distribution
has negligible effect on our algorithm and the produced results.

We also measure the accuracy of the algorithm as the
number of member links per SRLG increases. Fig.9 plots the
percentage of error after 10 failure iterations for a number of
links per SRLG ranging from 1 to 6. From this figure, it can
be observed that the accuracy of the algorithm is very good
for j = 2 or j = 3 member links per SRLG with ν parameter
set to 2. However, the SRLG prediction error increases as the
number of link per SRLG increases further.

Fig. 8. Effect of accumulated delay distribution on the performance of our
algorithm

Fig. 9. Percentage of SRLG prediction error with number of member links
per SRLG

Fig. 10. Percentage of false positive and true negative with number of failure
iterations (disjoint SRLGs), ν = 3

The percentage of error in SRLG prediction with respect to
time (in terms of failure iteration) when setting the parameter
ν to 3 in the multivariate Weibull distribution evaluation of
Eq.(11) is shown in Fig.10. By comparing Fig.10 with Fig.5
obtained with ν = 2, we conclude that i) setting ν = 2 is
sufficient for the algorithm to provide reasonably accurate
SRLG prediction, and ii) increasing the parameter ν to 3
for instance, does not further increase the accuracy of our
algorithm.

VI. CONCLUSION

In this paper, we have proposed a technique to improve
the router recovery time upon occurrence of topological link
failure by detecting and identifying the existence of SRLGs
from link state routing information exchanged in the routing
domain. The proposed model first groups into events individual
LSAs originated by different network nodes (routers) upon
link state change; then, it combines this information to find
temporal dependence among members of event groups. It
further introduces a physical model interpretation derived from
the application of the Weibull distribution, to determine the
error on the joint probabilities of events resulting from the
finite observation sample. This association allows binding the
dependence of the identified groups of one or more events
(associated to SRLG) on the corresponding estimated failure
rate. The result of the SRLG detection and identification phase
is subsequently used to trigger simultaneous routing table



updates from the arrival of a reduced set of (ideally one) LSA.
The simulation results show that the SRLG prediction

resulting from the execution of our algorithm provides enough
confidence when the number of links per SRLG is relatively
limited. Further improvement is expected from better adjust-
ment of the κ parameter in the multivariate Weibull distribution
to better account for time threshold effects. Nevertheless, the
evaluation of the gain of the proposed SRLG detection and
identification technique shows promising results with different
SRLG failure scenarios and realistic network topology. To
extend its applicability, future work includes execution of the
algorithm with other simultaneous failure scenarios such as
geographically correlated link failures, and evaluation of the
model in other environments such wireless (meshed) networks.
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