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D3.2 - Implementation of adaptive traffic sampling and management, path performance 
monitoring and cooperative intrusion and attack/anomaly detection techniques 
 

Executive Summary 
 
The aim of the ECODE experimental research project is to introduce a new Internet architectural component 
realized by means of a cognitive system and that preserves the original Internet design principles, including the 
end-to-end principle and its transparency, to sustain growth of an Internet that remains inline with what it 
supposed to deliver to the end-user and that performs in accordance to what it is expected to deliver to the 
end-user. As the purpose of this new architectural component is to sustain growth of an Internet that 
performs in accordance to what it is supposed to deliver to the end-user and performs according to these 
expectations in order to satisfy the end-users, large-scale testing and validation is explicitly in the scope of this 
research project. Combined experimentation will allow determining whether composing the Internet high-
level goals - societal, economical, etc. - can be translated into lower-level objectives (in terms of functionality 
and performance) and constraints (both technical and non-technical) and enforced via the newly introduced 
cognitive component as part of the Internet routing system. 
 
This deliverable is part of a series of 3 deliverables – one per technical objectives (TO) [ECODE 2007] – which 
aims at describing the design and the implementation of the different use case functions. More specifically, 
this deliverable addresses the implementation, development and first experiments performed in the 
framework of TO1 related to: 

• Adaptive sampling 
• Path performance monitoring 
• Cooperative intrusion and attack/anomaly detection 

 
This deliverable describes the technical problems that need to be solved. A particular attention is given to the 
machine learning techniques designed and implemented for the different use cases; machine learning 
techniques are the heart of this deliverable (as well as of the whole project) as they are providing the 
necessary advantage for a better router design, and better network performances and manageability. After 
having described how the monitoring techniques are implemented for solving the different use cases, first 
performance evaluations are detailed. At this stage, evaluation of the concepts and their implementation is 
done by means of simulation and/or small scale experiments (emulation most of the time, but can be also 
experiment in real environments). Nevertheless, the first comparisons with other solutions can be made, and 
are exhibiting the gain provided by the ECODE router architecture based on the integration of strong cognition 
capabilities for enforcing and managing routing functions. 
 
Last, first premises on how the different components designed in TO1 will be integrated all together in the 
future ECODE cognitive router, are studied and detailed in Section 6. 
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1. Introduction 
 
This deliverable aims at describing the design and the implementation of the different use case functions of 
TO1. More specifically, it addresses the implementation, development and first experiments related to: 

• Adaptive sampling 
• Path performance monitoring 
• Cooperative intrusion and attack/anomaly detection 

 
This deliverable describes the technical problems that need to be solved for each of these use cases. A 
particular attention is given to the machine learning techniques designed and implemented for the different 
use cases; machine learning techniques are the corner stone of this deliverable (as well as of the whole 
project) as they are providing the necessary advantage for a better router design, and better network 
performances and manageability.  
 
After having described how the monitoring techniques are implemented for solving the different use cases, 
first results of performance evaluations of the proposed solutions are detailed. At this stage, evaluation of the 
concepts proposed and their implementation is performed by means of simulation and/or small scale 
experiments (emulation most of the time, but can be also experiment in real environments). Nevertheless, the 
first comparisons with other solutions can be made, and are exhibiting the gain provided by the ECODE router 
architecture based on the integration of strong cognition capabilities for enforcing and controlling routing 
functions. 
 
Last, it will be explained how the different components designed in TO1 will be integrated all together in the 
ECODE global architecture 
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2. Formalization of the different technical problems 
 
2.1 Case a1: Adaptive traffic sampling and management 
 

The main technical problems we faced were: 
• Getting NetFlow widely collected traces of real traffic. 
• Having control of the different measurement points towards running our adaptive traffic sampling 

and management solution online.   
 
These difficulties triggered the need for fully controlled and realistic platform. As part of our contribution to 
the ECODE project, we present the validation platform we used to evaluate our adaptive traffic sampling and 
management solution. Note that the platform we are proposing could also be used by other partners who are 
encountering the same challenges and targeting the development of adaptive architectures. 

 
2.2 Case a2: Global monitoring 
 
The global monitoring system consists of two subsystems: 

• The passive monitoring and measurement system 
• The active monitoring and measurement system 

Note that the active probing system will not be described in this deliverable. As the active monitoring probing 
fits TO2 requirements, it is presented in deliverable D3.4 for readability and understanding purposes. 
 
On the other hand, the passive monitoring system is essentially used in use cases A1 and A3 of the first 
technical objective. Therefore, its design and implementation are described in this deliverable. The passive 
monitoring system to be developed in the ECODE project is devoted to serve for all machine learning methods 
which will require packet traces. It is supposed to provide two main facilities: 

• capture packets, 
• and providing a framework for easily integrating any analysis module for the captured packet. 

 
Concerning the capture, it can be launched on any interface on-the-fly. The analysis framework needs to offer 
two facilities:  

• launch any analysis on the fly 
• export the result of these analysis through logging, reporting or trace generation.  

 
The analysis framework also needs to be able to launch, stop and manage several analysis sessions 
independently. 
 
2.3 Case a3: Cooperative distributed anomaly detection 
 
The Internet has greatly grown in complexity, changing from a single best effort service to a multi-services 
network that is ever more demanding of guaranteed quality of service (QoS), for instance for Voice over IP 
(VoIP) or IP TV which require a strict delivery process of audio and/or video data units. Network traffic 
anomalies can seriously impact or disrupt the normal operation of networks. It is then vital that their detection 
and mitigation be quickly identified by network administrators. A specific type, volume anomalies, is 
responsible for unusual modifications on network traffic volume characteristics (normally identified on the 
#packets, #bytes and/or #new flows). These anomalies can be caused by various events: from physical or 
technical network problems (e.g. outages, routers mis-configuration), to intentionally malicious behaviour (e.g. 
denial-of-service attacks, worms related traffic), to abrupt changes caused by legitimate traffic (e.g. flash 
crowds, alpha flows). This diversity coupled with the great (natural) variability of normal Internet traffic 
volume [Owezarski 2005], makes the identification and mitigation of these anomalies a very challenging task. 
 
Despite these difficulties, constant progress has been realized in network traffic anomaly detection. Methods 
have been created to detect anomalies in single-links and network-wide data, and techniques have been used 
to cope with the high dimensionality of network traffic data (e.g. sketches [Li 2006] [Dewaele 2007] and 
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principal components [Lakhina 2004] [Lakhina 2005]. Algorithms for network traffic anomaly detection have 
evolved from only being able to timely signal an anomaly (e.g. [Barford 2002] [Scherrer 2007]) to providing 
information about the actual flows that cause the anomaly [Li 2006] [Dewaele 2007]. This information is 
necessary for network administrators that need to manually verify and mitigate potential anomalies, but is still 
not sufficient. Because of the characteristics of network traffic and the frequency of anomalies, real-time 
analysis of all anomalies detected by state-of-the-art detection algorithms is not possible. Network operators 
need more information than just the anomalous flows to efficiently prioritize between detected anomalies. 

2.3.1 Attribute based local detection and classification of anomalies 
 
Although some efforts have been dedicated to characterize network traffic anomalies, automated 
classification has not received much attention (a notable exception is [Lakhina 2005]). Automated classification 
intends to add meaningful information to the alert of a detected anomaly. Ideally, the computed information 
can then be used to define the type of the anomaly or to at least help characterizing autonomously its 
underlying cause. In this use case, we propose a new algorithm for automated classification of network traffic 
anomalies. We show how the information obtained by further analyzing the identified anomalous flows, can 
be used in a signature-based classification module to reliably characterize different types of anomalies, e.g., 
DDoS, network scans, attack responses. One of the objectives of this approach is to provide the flexibility 
needed by network operators to understand and manipulate the anomaly classification process. 
 
For this purpose, two issues have to be addresses leading to a two-step algorithm: 
(i) Detect anomalies and identify all (or most) related packets or flow; 
(ii) Use these packets or flow records to derive several distinct metrics directly related to the anomaly 

and classify the anomaly using these metrics with a signature-based approach. 
 
These steps are based on the observation that much information is needed to reliably classify different types 
of anomalies and even to distinguish between subtypes, like the many types of DoS attacks. Since current 
detection algorithms are based on few parameters (i.e. traffic volume metrics or traffic features like IP address 
and ports), steps are necessary to obtain more information about the anomaly. Naturally, the best source of 
information is traces of packets or records of flows that actually cause the anomaly. From now on, we will 
refer only to packets traces, but similar results can be obtained using flow records. 
 
For the first step, we use a variation of the simple traffic volume anomaly detection algorithm presented on 
[Farraposo 2007]. The detection algorithm can be explained as follows. Given a trace of duration T and a time-
scale granularity of ∆ (i.e. 30s throughout this report), divide the trace in N slots where N ∈ [1, T/ ∆]. For each 
slot i obtain the data time series X of each traffic volume metric ∈ {#packets, #bytes, #syn}. Obtain the 
absolute deltoids [Cormode 2005], i.e., absolute difference P of X and calculate their standard deviation σ(p). 
For any pi over the threshold K*σ(p), mark its slot as anomalous. Using the deltoids of the data time series is 
important to consider the variation over the amplitude of the curve instead of the variation of network traffic, 
as the latter is insignificant due to its natural high variability. Our choice of metrics is based on [Lakhina 2004] 
(with #syn instead of #new flows), but the algorithm permits the use of any other data time series. 
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Detection of low intensity anomalies is important especially for DDoS anomalies [Owezarski 2005] and for 
anomalies concealed in highly aggregated traffic. To detect low intensity anomalies, we apply the detection 
algorithm to different aggregation levels at the same time. Aggregation is performed based on destination IP 
address and a bit mask modifier for each packet. Up to now, we use the following prefix sizes as aggregation 
levels /0 (i.e. whole traffic), /8, /16 and /24. As with any other detection algorithm, this increase in sensitivity 
generates a higher rate of false positives (i.e. normal traffic variations are considered anomalous). With the 
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multi-level feature, the algorithm presented above is particularly sensitive to infrequent communications 
where only a few packets are seen for a given network/mask aggregation. Although this would generally make 
the algorithm unusable, we built the classification process as a filter that greatly reduces the number of false 
positives. The simplicity of the detection algorithm makes the next step (i.e. identification of corresponding 
packets and derivation of metrics) a straightforward task and permitted us to concentrate on the 
characterization of anomalies. 

2.3.1.1 Obtaining information 
 
From the characterization of network traffic anomalies as proposed in [Barford 2002] [Lakhina 2004] [Lakhina 
2005], different types of anomalies can affect volume metrics and traffic features, such as IP addresses and 
ports, in the same manner. This clearly shows that we cannot perform reliable classification based only on 
these metrics, and further information needs to be identified. For this purpose, we introduce the notion of 
anomaly attributes. An anomaly attribute is a feature that helps to characterize a specific anomaly (see Table 
1). The classification module uses signatures based on attributes derived directly from the packets that 
compose the anomaly. 
 
The detection algorithm retrieves these packets straightforwardly. A detected anomaly is identified by its slot, 
network address and mask. We also know exactly why it was considered anomalous (i.e. the deltoid for one or 
more of the volume metrics was above the threshold). Using this information, we then read all packets of the 
corresponding slot that are destined to that network, so that we can find the responsible destination hosts (i.e. 
IP address/32). Our idea of responsible destinations is similar to the notion of dominant IP address range 
and/or port of [Lakhina 2004]. In our algorithm, the set of responsible destinations comprises all the 
destination hosts that appear in any of the possible combinations of minimum sets that would bring the 
anomaly's corresponding deltoid below a fraction of the original threshold. After identifying these hosts, we 
follow an equivalent approach to determine the responsible sources, ports and protocols. This notion could 
also be applied to any other traffic feature. Potentially, finding the packets (or flows) that compose an anomaly 
can be performed with any detection algorithm that identifies the starting time and anomalous flows of the 
anomalies (e.g. [Li 2006] [Dewaele 2007]). 
 

 
 

Table 1. Attributes derived from a given anomaly. p, b and s are for packets, bytes and syn respectively 
 
During the anomaly detection and responsible flows identification phases, we compute the attributes shown in 
Table 1. Attributes found and impactlevel are specific to the detection algorithm we use in this work, but 
similar attributes should be available for other detection algorithms. The remaining attributes are derived 
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while identifying the responsible flows. This list is by no means exhaustive and can be further extended. These 
attributes are those we identified as useful up to now. 

2.3.1.2 Classification 
 
The main objective of our algorithm is to automatically label network traffic anomalies during their actual 
detection. The vast number of different types of anomalies [Lakhina 2004] and the variations of individual 
types make it necessary to create very specialized signatures to achieve low misclassification rates. We finally 
created 5 rules which are able to classify any known anomaly types. The 5 rules are indicated in Table 2. 
 

 
 

Table 2. Examples of strong signatures used in this work. (gr stands for the time series granularity and sspp is an abbreviation for the 
attribute samesrcportspred) 

 
For more information about this anomaly detection / classification algorithm, we refer to [Fernandes 2009]. 
 
In this context, the following objectives we started to work on deal with: 

• determine the thresholds for each element of each rules for the classification system 
• find new rules for detecting new anomalies. 

2.3.2 Distributed detection of anomalies 
 
The classical setting in networking generally assumes that the information that is exchanged is statistically 
independent. However very frequently this is not strictly the case and nodes do exchange information that is 
correlated. Distributed anomaly detection has to deal precisely with such a setting: each monitoring node in 
the network maintains a vector of numerical state information. As the different monitoring nodes observe 
interacting traffics the state maintained by them is correlated.  
 
Distributed monitoring and anomaly detection involves exchanging information between nodes such that each 
node obtains an approximate view of the states of all other nodes. Through the information exchanged the 
local observation of a node is extended to the global state of the network. One important challenge here is to 
deal with nodes selfishness, i.e. a node wants to achieve the best approximation of other nodes states 
consuming itself the lowest amount of resources. This means that we need an incentive/punishment 
cooperative mechanism to motivate node to exchange information. One should also assume that the quality of 
approximation about other states is not defined a priori; it needs to be defined online during the operation of 
the distributed system. The distributed anomaly detection, a communication scheme initially designed by 
Lancaster University enables the sharing of correlated node states; a punishment scheme has been proposed 
that solves the node selfishness issue; a signalling method has been proposed that enables a node to 
announce to other nodes its state variable of interest as well as their importance. The proposed scheme 
merges approximation obtained at different nodes into a single consistent approximation with better quality. 
We will show that the proposed scheme implements a negotiation between neighbours that trade-off an 
increase of the node transmission rate to its neighbour with a mechanism achieving a better approximation of 
the state of other nodes. 
 



FP7-ICT-2007-2 – ECODE Project (223936) 
 
 

Deliverable 3.2                                                            Page 11 of 54 

3. Machine Learning techniques/algorithmic 
 
3.1 Case a1: Adaptive traffic sampling and management 
 
The main goal is to build a network-wide system that, given a measurement task (in the form of a filter to 
apply on the traffic) and an overhead threshold, is able to:  

• Collect and obtain data from different monitors deployed in network routers. All monitors integrate 
sampled NetFlow-like traffic capturing tools as well as reporting capabilities for exchanging 
information with the collector. 

• Introduce a cognitive component that processes the collected measurements from the different 
routers, correlates them and calculates the targeted metric together with its estimated error. This 
component also measures the amount of overhead caused by the actual configuration of monitors 
(volume of collected measurements, CPU, memory, disk space, etc). 

• Drive its own deployment by automatically and periodically reconfiguring the different monitors in a 
way that improves the overall accuracy (according to monitoring application requirements) and 
reduce the resulting overhead (respecting some resource consumption constraints). 

• Support a general class of monitoring applications. In the sequel, algorithms and results will be 
illustrated by means of a traffic accounting application. 

 
 

 
 

Figure 1: General principle of adaptive sampling 
 
As illustrated in Figure 1, the proposed monitoring system relies on local NetFlow-like measurement tools 
(Monitoring Engine (ME)) deployed in network routers as well as reporting capabilities for exchanging 
information and decisions with the central unit (Cognitive Engine (CE) referred to as Machine Learning Engine 
since using Machine Learning techniques). The targeted application provides input to the system in the form of 
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a filter to apply on the data, and the system adjusts the sampling rates in routers to answer the application 
needs with the best accuracy and the lowest overhead. Next, we give a detailed description of the architecture 
components. 

3.1.1 Monitoring Engine (ME) 
 
The monitoring engine runs in each router and aims at sampling and capturing packets at the interfaces of the 
router. It then exports them in the form of NetFlow records to the central collector. As depicted in Figure 1, 
one can observe four main modules: 

• Packet capturing: this module listens to the network interface and sample data at a given sampling 
rate. This sampling rate is configured each time by the Cognitive Engine (CE) next to the optimization 
it carries out after correlating measurements from all routers. 

• Classifier: Once a packet is sampled by the Packet capturing module, the classifier identifies flows by a 
key (in our case this key corresponds to the 5-tuple consisting of source and destination addresses, 
source and destination port numbers, and protocol number). The Classifier then determines if a flow 
is active or if it is a new flow. If the flow is active, it updates real-time statistics on that flow such as 
the number of packets and bytes. If it is a newly observed flow, it inserts a new flow record for this 
new packet’s key. The ME maintains the keys of flows forwarded by the router together with the 
collected statistics on those flows. A flow is declared terminated by the Classifier in one of three 
cases: (i) when observing a FIN or a RST packet (TCP control), (ii) when a timeout expires after the 
record for that flow was created, and finally (iii) when the number of records exceeds a given 
threshold in order to release memory.  

• Reporting: Once collected, flow records are exported using UDP messages to the central Unit 
(Cognitive Engine) through the CM (Cognitive-Monitoring) interface. 

• Controller: Based on the collected data and machine learning methods, the cognitive component 
takes a decision on how to tune the sampling rates and sends the decision back to the ME. The 
controller in each router receives the decision and updates the sampling rate in the ME accordingly. 

3.1.2 Machine Learning Engine 
 
This component is motivated by the need to extend the local existing monitoring engines (see Section 3.1.1) 
with a network-wide machine learning engine (MLE) implementing machine learning methods and able to: 

• Investigate the local measurements collected from the different MEs (local view) to construct a global 
view of the traffic and the network state. 

• Automate and enhance network-wide monitoring control capabilities while decreasing their resulting 
cost. The automation of the control of sampling rates is achieved by learning experiences from the 
accuracy of the collected data and the overhead of measurements.  

 
The (processing part of the) MLE runs two processes: 

3.1.2.1 Global Network Traffic Inference Process  
 
Given a measurement task to realize, the Inference process investigates the local measurements made by the 
different routers to have a global more reliable view. The engine takes as inputs the sampling rate vector of 
network routers as well as the local estimations calculated from the reports sent to the collector by the 
different MEs and stored in the Observation Information Base (OIB). The process tries then to combine the 
local estimators and derive a better estimation. This combination should be motivated by the need to 
minimize the amplitude of estimation errors given the monitoring objective one has in mind. To this end, we 
start by constructing a global estimator for each network flow as a weighted sum of the different local 
estimators. The weights are chosen to be inversely proportional to the estimation errors of the local 
estimators. This way, local estimates with smaller errors have a larger impact on the global estimator than 
those with high errors. Such weighted summation of local independent estimators is known to be the best 
linear combination one can envisage in terms of mean square error. 
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3.1.2.2 Network Reconfiguration Process 
 
The Network Reconfiguration process is fed with the global estimation and its accuracy from the Inference 
process as well as the resulting overhead from the OIB. It aims to coordinate responsibilities across the 
different monitors (routers) in order to increase global accuracy while avoiding unnecessary measurements. To 
achieve this goal, we proceed by an adaptive centralized control of sampling rates in routers based on 
measurements of the estimation error and the overhead. Periodically, we collect measurements and calculate 
the estimation accuracy and the overhead. Then, we propose one of two actions: (i) either to decrease the 
sampling rate of the least significant monitor when the resulting overhead is higher than some overhead 
threshold, (ii) or to increase the sampling rate of the best monitor when the estimation accuracy is below 
some chosen threshold and the overhead is acceptable. The least significant and best monitors are 
respectively those providing the minimum loss and maximum gain in global accuracy when playing with the 
sampling rate. This method, which can be seen as an implementation of the Gradient Projection Method 
(GPM), is able to reach the optimum in a relatively short time that depends on the steps with which we adapt 
the sampling rates. The system keeps oscillating around this optimal configuration until the network conditions 
change, in this case it moves smoothly towards the new optimal configuration. 
 
3.2 Case a2: Global monitoring 
 
By design, monitoring is considered as a basic functionality aiming at quickly providing the traffic information 
required by the different other modules developed in the other use cases. The monitoring engine is thus not 
the most appropriate component for deciding what kind of traffic information is best suited for other modules 
that require this information. Thus, the monitoring engine does not implement machine learning techniques. 
The machine learning functionality is integrated at the upper level, i.e., by the different modules (sampling, 
anomaly detection, etc.). 
 
3.3 Case a3: Cooperative distributed anomaly detection 
3.3.1 Attribute based local detection of anomalies 
 
The use of machine learning in the context of anomaly detection aims at: 

• determining the thresholds for each element of each rules for the classification system 
• autonomously finding new rules for detecting new anomalies. 

3.3.2 Primary selection of machine learning techniques for anomaly detection 
 
See Annex 1. 

3.3.3 Application of machine learning to anomaly detection 

3.3.3.1 Objectives 
 
In this step of our anomaly detection system, the goal is to detect every single anomalous event. In order to do 
this, we currently use a model based on deltoids. However, we plan to test several other techniques like 
models based on Gamma-FARIMA eventually including sketch-based techniques. Based on traffic models, 
there is a need to use machine learning to determine the thresholds to be used for the detection of anomalies 
events. 

3.3.3.2 Supervised/semi-supervised learning and detection 
 
These two techniques require data for the training phase. Training data consists of several packet traces 
including some anomalies. Inside the packet traces, each packet will be marked in order to know whether it is 
part of an anomaly or not and if yes, which one. 
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In practical terms, we will split a trace in several time slots. We will then apply our model (deltoid, Gamma-
FARIMA, etc.) on each time slotted data. At the same time, we plan to mark every slot containing an anomaly 
by using our own knowledge of the data contained in the traces, e.g., the knowledge potentially resulting of 
previous analysis of the traces, or because we could have synthesized ourselves these training traces. 
 
As exposed in the previous chapter, the training data used by a supervised algorithm is composed of a pair of 
objects. The first element of the pair is the value to feed the learning algorithm with, here, the data processed 
by the model. The second element is the result, here, the presence or not of an anomaly. In the same way that 
the supervised algorithm can determine the threshold for the temperature and humidity that make the player 
go to the green to play golf (cf. Annex 1), we can determine the thresholds for the values of the models that 
predict that we have an anomaly. 

3.3.3.3 Unsupervised learning and detection 
 
Due to its simplicity and ease-of-use, we plan to first try to implement supervised learning. However, we still 
keep into consideration the capabilities of unsupervised learning. In fact, depending on the results of 
supervised learning, we might be lead to implement unsupervised learning technique. 

3.3.4 Application of machine learning to anomaly classification 

3.3.4.1 Objectives 
 
In this step of our anomaly detection system, the goal is to classify the anomalies detected by the detection 
system. For this purpose, we use the rules presented in the Table 1.2. 
 
We have two objectives as part of the anomaly classification step: 

• Apply a machine learning algorithm that will allow us to determine the threshold for these signature 
based rules. 

• Discover new anomalies i.e. anomalies never seen before (0day anomalies). This is definitely one of 
the most difficult goals to accomplish in anomaly detection. In our system, any 0day anomaly needs 
to be associated with a new rule in order to be detected. Our goal is to automate this process and to 
be able to automatically find a new detection rule suited for the new 0day anomaly. 

3.3.4.2 Supervised/semi-supervised learning and classification 
 
1. Application 
 
For reaching the first objective (finding automatically existing rules thresholds), training data is needed. Such 
data consists of several packet traces including some anomalies inside. After the anomaly detection stage, 
each packet will be marked to indicate whether it is part or not of an anomaly and if yes, which one. 
Supervised and semi-supervised learning algorithms are perfectly suited for re-determining the rules and 
determining the thresholds in a reliable and simple way. 
 
2. Restrictions 
 
However, these algorithms present several limitations. First of all, their use implies that we have labelled data 
at our disposal. In our case, these data are traces where the anomalous packets have been previously labelled. 
The process used to obtain these traces is long and tedious. Moreover, these types of algorithms are based on 
labelled anomaly. This implies that the labelled anomalies are known and identified. This excludes one of the 
goals of the system, i.e.: the discovery of anomalies never seen before (as 0day attacks). 

3.3.4.3 Unsupervised learning and classification 
 
In this section, the second of this work is addressed, i.e. automatically generating new rules for 0day 
anomalies. 
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1. Representation of anomalies in unsupervised learning 
 
First of all, when we address the representation of traffic in our multi-dimensional data space, we consider 
each point as a packet. Each point will then be either associated to a model representing a traffic class (normal 
or anomalous) or, if it is considered too far from the model(s), let alone and be considered as an outlier. It is 
the link between being part of a model or being an outlier and belonging to the normal or anomalous traffic 
that we will address in this subsection. 
 
In all previous work that we are aware of, two possible representations of network traffic through 
unsupervised learning have been considered. In the first representation, the network traffic is represented by 
several models and each model is associated with a part of the network traffic. In Figure 7, one can observe 
presence of several models (two actually) that can represent either a class of normal traffic or a class of 
anomalous traffic. If Figure 4, there is one (or more) cluster(s) for the normal network traffic (here the green 
cluster) and one (or more) cluster(s) for each type of anomaly present (the red cluster and the blue cluster). 
 

 
 

Figure 4: Model with clusters 
 
In the other representation, there is one or more models for the normal traffic and any points that do not fit 
the model(s) are considered outliers and thus, part of the anomalous traffic. In Figure 6, there is only one 
model (the red Gaussian curve) that represents a single class of normal traffic. Any point located too far from 
the model is anomalous. In Figure 5, there is(are) several cluster(s) (in our example below, only one) for the 
normal traffic (here the green cluster) and each outlier represents an anomaly (the black point and the brown 
point). 
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Figure 5: Model with one cluster and several outliers 

 
At this point of our experimentation, we have no indication about actual representation of the anomalies. 
Nevertheless, we think that, since anomalies are usually composed of many packets, the second 
representation (as illustrated by Figure 5) should not be used and we should consider only the first 
representation (illustrated by Figure 4). 
 
2. Choice between the different forms of unsupervised learning 
 
In the next paragraphs, we address the problem of the choice of the unsupervised techniques. The objective is 
to build a technique that can identify several classes of traffic and keep some understandable attributes. We 
will only talk about dimensional reduction, density estimation and clustering since they are the three most 
represented techniques in the literature and the one presented during the several talks about machine 
learning inside ECODE consortium. 
 

• Dimensional reduction: the principle of dimensional reduction is to project the data from a set of 
great number of dimensions to a set of smaller dimension. In our case, it means that we would end up 
with a set of variables that would have no physical/concrete meaning. One of our goal being to keep 
some understandable attributes in order to have easy to understand and meaningful rules (i.e. 
anomaly characteristics), the dimensional reduction is in clear contradiction with our requirements. 

 
• Density estimation: efficient technique to detect outlier if the normal traffic is a single class (and not 

composed of several classes) and that anomalies are only outliers (and not one or more class(es)). As 
depicted in Figure 6, the single class considered could be the one of the normal traffic. Anomalies 
would be represented as outliers (points that are too far from the model). Interpreting Figure 7 we 
could have for example, two classes for the normal traffic (green and red curves) and the anomalies 
would be the outliers. We could also have one class for the normal traffic (green curve) and one class 
for the anomalous traffic (red curve). In both of these cases, density estimation would be ineffective 
since it is able to consider several classes. Therefore, this form of unsupervised learning seems to not 
be adapted to our case because we cannot guarantee that we will be in the case of Figure 6. 
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Figure 6: One class system 

 

 
Figure 7: Two classes system 

 
• Clustering: cluster analysis or clustering is the assignment of a set of observations into subsets (called 

clusters) so that observations in the same cluster are similar under some chosen criteria. Clustering 
does not have any of the limitations listed above: it keeps all the attributes in a clear and intelligible 
form and it can consider and analyze them without any limitation on the number of classes (in our 
case, the number of classes of traffic including both normal and anomalous ones). 
 

Based on this initial analysis of potential techniques, we selected the clustering technique as it appears to be 
the most adapted and promising form of unsupervised learning to address our problem. 
 
3. Anomaly identification 
 
However, many problems linked to the use of unsupervised learning occur. The first of these problems is the 
identification of the clusters. In fact, the system is unable to determine whether a cluster represents the 
“normal” behaviour of the network or an anomaly. 
 
In order to cope with this problem, three solutions are available. The first solution is to manually identify 
whether each cluster corresponds to normal or anomalous behaviour. The second solution would be to 
perform a two-step processing: a first one to identify the cluster(s) which represent(s) the “normal” behaviour 
by comparing it to reference network traffic without anomaly (we may use supervised learning in this case) 
and the second step would consist in manually identifying the cluster(s) which correspond(s) to anomaly(ies). 
The last solution would be possible under the hypothesis that anomalies are less important than normal 
behaviour in term of surface or volume. As we haven't run any tests since so far, we cannot make any 
assumption on which would be more suited to our needs. 
 
4. Discovering new anomalies with machine learning 
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One aspect that differentiates unsupervised learning from supervised and semi-supervised learning is that it 
theoretically allows to discover new anomalies through the detection of new clusters (or new outliers, 
depending on the anomaly representation selected). However, discovery of anomalies seems to be correlated 
to the choice of the used attributes or fields of the packets headers. Indeed, by inspecting table 1.2, one can 
notice that every rule is using different attributes. This implies that if we try to find these new rules from 
scratch, we will need to search for new previously unused attributes/fields. Therefore, the discovery of new 
types of anomaly seems to be heavily linked to the discovery of new pertinent attributes/fields. This search 
seems to be the most important point in the discovery of new anomaly through unsupervised learning. 
 
The basic method that we intend to use to find new rules is to create new attributes, and then, systematically 
try to find clusters inside the captured data to assess the presence of a new rule built upon the newly created 
attributes. The problem of creating new pertinent rules can then be split into two tasks: first, create new 
attributes, second, create pertinent rules. 
 
5. Create new attributes 
 

• Attribute generation: Table 1 is actually composed of attributes that are built from packet header 
fields. We plan to imitate this technique automatically and create attributes through a simple 
calculation (count, division, mean, distributions, etc...) of the packets fields (IP address, TCP/UDP 
ports source/destination, etc.). However it is obvious that such a variety of possible calculations 
applied to a large number of packet header fields will generate a huge amount of possible 
combinations. The next issue will be to eliminate the attributes that seem to be of less interest. 

 
• Attribute interest assessment: We want to assess whether a generated attribute contains enough 

information. In fact, if we want to extract clusters from the data spaces, we will need attributes that 
have a quantity of information as large as possible. The evaluation of the quantity of information may 
be computed through entropy or another index. We have already started to investigate several 
indices and we plan to compare them. 

 
6. Create new rules 
 

• Rule generation: The rule generation will simply consist of choosing several dimensions (or 
attributes). We intend to sweep through all the attributes previously generated and generate every 
possible rule. Once the new rule is created, we generate the cluster(s) in the chosen dimensions. The 
next step is then to assess the interest of the new rule. 

 
• Rule interest evaluation: As explained in the previous paragraph, a new rule to evaluate is actually a 

new set of dimensions where we'll try to find pertinent clusters. The key component to evaluate the 
quality of a newly built rule is the ability to measure the quality of the cluster(s) found in the 
dimension(s) of the new rule. In fact, clustering methods allow us to find some clusters but if we lack 
a metric to assess the reliability or the pertinence of the clustering, the process would be useless. 
 
Note: Kave Salamatian talked in his presentation called An Introduction to non-Supervised Learning 
Techniques [Salamatian 2008] about a criterion called Normalized Mutual Information that might be 
useful to evaluate the clustering quality. We are currently looking for this kind of method. 

3.3.5 Conclusion 
 
In a nutshell, creating new rules will consist in creating new spaces through the association of new attributes 
built from previously unused fields from the packets headers. 
 The most critical part in this proposal is that the number of attributes/rules/clusters to process will be huge. 
As part of the first step, reducing this number implies to eliminate useless attributes through the use of several 
indices to evaluate their interest. We plan to try to find other way to reduce the amount of calculation to do. 
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We think that by having an efficient and fast search of attributes/rules, our system will be really efficient and 
that we will be able to find new anomalies. 

3.3.6 Distributed detection of anomalies 
 
The class of parametric statistical anomaly detectors needs to implement three phases:  

1. A modelling phase that consists of capturing essential correlation structure of the state vector to 
monitor. This phase has a strong machine learning flavour and generally uses statistical model 
calibration techniques as Expectation Minimization to implement Maximum Likelihood fitting or 
Principal Component Analysis to derive approximate low dimensional models. 

2. A filtering phase that consists of using the correlation structure model obtained in the first phase in 
order to reduce the entropy of the observation by removing the information’s irrelevant to anomaly 
detection. The approach assumes that everything that goes along with the correlation structure 
obtained in the first phase is irrelevant to anomaly detection.  

3. A decision phase that takes the signal filtered in the second phase and applies to it a statistical test 
that will decide if there was an anomaly somewhere in the network or not.  

 
These three phases are now well investigated in the centralized case where all observations are available at a 
single point. However, moving from a centralized setting to a distributed setting -our ambition in this project- 
necessitates implementing the two above defined phases in a distributed way. Our machine learning approach 
consisted of developing distributed machine learning techniques to deal with distributed modelling. The 
approach followed consisted of developing a network wide state-sharing scheme that enables each node to 
obtain an approximation with a controllable precision of other nodes states. This approximation is obtained 
through a distributed optimization that could be seen as a distributed Principal Component Analysis; a 
technique widely used in centralized machine learning. This technique was chosen because of the nice and rich 
theoretical framework that exists around it. 
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4. Implementation 
 
4.1 Case a1: Adaptive traffic sampling and management 
 
Our platform consists of three main components: the traffic emulation service, the traffic monitoring and the 
sampling service, and the flow data collection and analysis service. Figure 8 depicts the interactions between 
the three main components. 
 
The traffic emulation service is an advanced emulation environment we implement to evaluate the adaptive 
monitoring and sampling solution we are proposing. The tool is general enough that other partners could twin 
it if needed and use it for the evaluation of their own solutions. 
 
The traffic monitoring and sampling service as well as the data collection and analysis service are part of the 
global ECODE architecture. We develop these services in such a way they could either be connected to the 
emulation service or directly to a real network interface. Hence, the proposed modules can be easily exported 
and tested in a real environment. 
 

 
Figure 8: Global Architecture 

 
A common usage scenario of our platform would include the following steps: (i) The user starts by supplying 
the traffic emulation service with two XML files describing respectively the list of traces to play (the path) and 
the network topology (AS(s), transit networks, routers, monitors, links, ). (ii) Once done, the user can run the 
three services either in the same machine or in three different machines towards achieving better 
performance and scalability. Running the traffic emulation service will result in emulating the described 
topology within the same machine, dispatching the set of packet-level traces and playing them over the 
topology. Running the traffic monitoring and sampling service will result on monitoring routers selected as 
monitors by the user, constructing the 5-tuples flows starting from the sampled packets, and forwarding the 
flows reports to the data collection and analysis service. (iii) Within the last service, the user can run advanced 
traffic analysis algorithms. In our case, we use the adaptive traffic sampling and management scheme 
described in Paragraph 3.1. We are able to run adaptive algorithms from within the Data Collection and 
Analysis service thanks to the API we provide for remote online controlling the monitors. 
 
In the following paragraphs, we detail each of these services. 

4.1.1 The Traffic Emulation Service  
 
Many proposed monitoring solutions by the network research community deals mainly with traffic monitoring 
at the flow level. The best approach to evaluate such solutions would be the presence of real network wide 
traffic where all packet headers are available in addition to time stamps and location information that indicate 
when and where each packet was seen. Unfortunately, getting these network-wide traces is rather difficult if 
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not impossible (since packet traces are confidential). Even when available, these traces prevent testing 
different topologies and different IP prefix allocations. However, one can easily find large TcpDump traces 
captured on some high speed link in a backbone transit network. The traces of the MAWI working group are a 
good example. One of the main contributions of our platform is the traffic emulation service that splits these 
TcpDump traces and plays them over some well defined network topology to reproduce the network wide 
packet-level traces users are missing. 
 
 

 
 

Figure 9: Architecture of the Traffic Emulation Service 
 
The prefixes dispatching process requires to have a-priori idea about the importance of the traffic resulting 
from each autonomous system connected to the backbone network with respect to the whole network traffic. 
To this end, we propose for our platform users a dispatching module that works at the IP prefix level. As the 
traffic loader module (described in Figure 9) reads packets from the TcpDump trace using the Pcap library, the 
dispatching module (described in Figure 9) associates them online to the right autonomous system based in 
one hand on the list of weights the user attributes to the different ASes and in another hand on the prefix 
length specified by the user. The weights should be described in the XML configuration file by the user as well 
as the network topology. For this, we propose a highly flexible configuration methodology via XML files 
through which users can describe their emulated network topology. For clarity, simplicity and future 
extensibility, we use XML structuring capabilities and we represent the whole network components in terms of 
hierarchical XML elements and attributes. Figure 10 depicts an example of a simple topology that users can 
describe via XML configurations files. Users are able to describe the list of autonomous systems and the 
topology of the transit network that interconnects them. Within the transit network, it is possible to describe 
the list of routers (Interfaces, IPs, etc), the list of monitors as well as the set of links interconnecting them 
including the characteristics of these links. In general, we provide as much details as it is needed to re-produce 
the closest possible topology to the real one. A detailed XML schema of our configuration files is available at 
http://planete.inria.fr/GEANT. 
 

 
 
 

Figure 10: Example of an Emulated Topology 
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The default dispatching method we are implementing is the weighted random. Suppose we have 23 ASes to 
which we associate different weights such that these weights divide the interval [0, 100] into 23 consecutive 
bins, where each bin represents the weight of an AS. Suppose that the user chooses the prefix length to 
dispatch as being the /16. Then, each time a new prefix of the same length appears while reading the raw 
trace, a random number is selected within the interval [0, 100] using a uniform distribution. This selected 
number points then to the AS to which the new prefix is to be associated. All subsequent packets having the 
same prefix as source or destination are associated to the same AS2. 
 
We also put emphasis on the extensibility of the traffic emulation service. Indeed, adding new traffic control 
and monitoring methods should be possible without major changes to the traffic emulation service design. For 
this purpose, we adopt an object oriented design and development methodology that ensures a modular 
architecture. Users are able to easily develop and plug different packet filtering policies or even distributed 
sampling protocols. In addition to the traffic emulation features proposed via this service, users interested in 
studying the performance of different routing algorithms can plug their own routing module providing that 
they maintain the same programming interface as the default one. For the moment, our routing module only 
support shortest path routing protocol based on the Dijkstra algorithm. Routes are static and can be set up via 
the XML configuration file. Users can also use our platform to deploy and study traffic engineering algorithms. 

4.1.2 The Traffic Monitoring and Sampling Service 
 
As shown in the Figure 8, the traffic monitoring and sampling service belongs to the Monitoring Engine (ME) 
and more specifically to the set of passive monitoring points (passive MP).  
 

 
 

Figure 11: Architecture of the Traffic Monitoring and Sampling Service 
 
We design and develop the traffic monitoring and sampling component as an extension of Softflowd 
(http://www.mindrot.org/projects/). Indeed, Softflowd is a flow based network traffic analyzer capable of Cisco 
NetFlow data export. It fully tracks 5-tuples traffic flows by listening on a network interface. These flows are 
then reported via NetFlow reports to a collecting host. Note that Softflowd does not include support for packet 
sampling neither fixed nor adaptive. Our extensions to Softflowd add this sampling functionality, which is 
essential for monitoring scalability. They also allow the integration of this tool over emulated nodes within our 
traffic emulation service, while being able to run over real routers by sniffing packets directly on their 
interfaces. Indeed, as shown in Figure 11, the traffic monitoring and sampling service could either work with 
TcpDump packets headers received from an emulated monitor within the traffic emulation service via the 
Virtual Interface Module described in Figure 11 of work directly on a real node interface. In the latter case, it 
captures traffic promiscuously using the Pcap library as described in Figure 11. Note that it is likely that the 
sampling module will place additional load on hosts or gateways on which it runs. Our implementation has 
been designed to minimize this load as much as possible. Indeed, in order to decide either to retain the packet 
being read or to reject it, the sampling module makes a decision each time the Pcap library returns a handle to 
a new packet and before the packet is being loaded to the memory. If the result of the sampling algorithm is to 
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capture the packet, the entire packet is then loaded and the maintained flow list is updated via the NetFlow 
flow constructer module, otherwise the packet is simply discarded. 
 
As described in Figure 11, the sampling module encloses a sampling algorithm as a core and a sampling rate 
control server. The default sampling algorithm we are providing is the following: if a user chooses a sampling 
rate of A/B (A packets among B packets, A <= B, B > 0, A >= 0), then every B packets, the sampling module 
generates randomly a set S of A numbers within the interval [1, B]. Packets with numbers outside the set S are 
rejected and only the remaining packets are considered for 5-tuple flow construction. Generated flows are 
then encapsulated within NetFlow reports and are exported via the NetFlow flows constructer and exporter 
module. The sampling rate control server enables users to change remotely the sampling rate of a given 
monitor whether it is in a real network or downstream the traffic emulation service. The remote monitor 
controller, which we will describe later, proceeds to change the local sampling rate to each monitor. This 
remote control functionality allows users to control and change online the sampling rate of one or multiple 
monitors, or simply offline from one experiment to the other. 

4.1.3 The Data Collection and Analysis Service 
 
As shown in Figure 8, the Data Collection and analysis service belongs to the Machine Learning Engine (MLE) 
and more specifically to the Processing bloc. 
 

 
 

Figure 12: Architecture of the Data Collection and Analysis Service 
 
We design and develop the data collection and analysis service starting from the functionalities proposed by 
Flowd (http://www.mindrot.org/projects/). Flowd is a secure NetFlow collector. It works with any standard 
NetFlow exporter, including hardware devices or software tracking agents. As described in Figure 12, we 
enclose the Flowd capabilities within the NetFlow reports receiver module around which we develop other 
modules namely the flow statistics generator and analyzer and the remote monitor controller modules. 
 
For the moment, we provide the adaptive sampling and management schema described in Section 3.1 within 
the Flows’ Statistics Generator and Analyzer Module. However, depending on user needs, one can easily adapt 
this module. For example, one can implement anomaly detection based on the collected NetFlow reports or 
introduce quality of service algorithms that can improve traffic routing as a function of the monitored network 
status. Independently of the data analysis process, the user can decide to change the sampling rate of one or 
more monitors to improve the accuracy of the algorithms implemented at the analyzer, either offline or 
online. For this purpose, the remote monitor controller shall be used. This controller is a shared module that 
we propose to plug and use within the data collection and analysis service but it can also be used separately 
either as a tool or with another software. The remote monitor controller provides an API to send control 
messages to a monitor specific control server, which modifies the sampling rate of the given monitor. 
 
4.2 Case a2: Global monitoring 
4.2.1 Specification 

4.2.1.1 Functions 
Our passive monitoring system is supposed to have two main capabilities: the capture of packets and the 
framework to analyze of the captured packet. Concerning the capture, we want to be able to launch a capture 
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on any interface on-the-fly. The analysis framework need to offer two facilities: launch any analysis on the fly 
and export the result of these analyses through logging, reporting or trace generation. The analysis framework 
also needs to be able to launch, stop and manage several analysis sessions independently. 

4.2.1.2 Technical solutions 
In order to improve the flexibility of our tool, we choose to use a multi-thread architecture (see Figure 13). The 
passive measurements are done though the libpcap library. We did this choice to be able to benefit from the 
flexibility and portability of the libpcap library. In fact, the use of libpcap is wide and its cost is null. We 
dedicate a thread for each interface for the capture. All the captured data from the different thread is then 
merged inside an interface which run inside a thread (cf. Figure 13). In order to be able to manage several 
analysis sessions in parallel, the processing is performed through several pipelines. A thread is used for each 
pipeline. The thread-interface then manages the forwarding of the captured data to the different process 
pipelines. 
 

 
 

Figure 13: Specification of the general architecture of the monitoring system 
 
Each process pipeline is designed to be composed of several analysis module and one output module. Each 
analysis module takes some data in input, and gives some in output. Output modules are supposed to export 
the result from the last analysis module in the chain through trace generation, reporting, logging, etc. 
 

 
 
 
 
 
 

Figure 14: Specification of the processing pipeline 

4.2.2 Global architecture 

4.2.2.1 Class diagram 
MonitorDaemon is the base class of our system. It manages Interface and CaptureManager. Interface then 
manages PipelineManager. This structure respects the principles explained in the paragraph Technical 
Solutions and the scheme present in it. MonitorDaemon manages the captures through the class 
CaptureManager, and the centralization of data and the process pipelines through the class Interface. 
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Figure 15: Monitoring system class diagram 

4.2.3 Passive measurements 

4.2.3.1 Class diagrams 
BaseThread implements the thread library from the Boost library. We choose to use this library for there is no 
default implementation of thread in C++ and because this library is free and quite well documented. Since 
CaptureController inherits from BaseThread, each instance of CaptureController can be a thread.  
 
CaptureManager then manages all the instances of CaptureController (i.e. the state of the threads and the 
parameters). 
 
CaptureManager 
 
This class aims at managing all captures including the capture parameters (e.g., size of headers to capture, 
etc...) and the thread management. 
The data stored inside the class is the following: a vector which contains all the name of the available 
interfaces (interfacesVector) and a vector which contains all the launched capture (captureControllerVector). 
The methods of this class include: 

• scanNetworkInterfaces(): scan network interfaces on the system and store the result in 
interfacesVector. 

• launchCapture(): launch a capture and store it in captureControllerVector 
• stopCapture(): stop a capture in captureControllerVector and remove it from 

captureControllerVector. 
 
CaptureController 
 
The function of this class aims at managing the capture of packet on a single interface (e.g. eth0, wlan0, etc.). 
 
The methods of this class are: 
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• initializeCaptureController(): initialize the capture with the pcap primitives and prepare the 
forwarding through a message queue. 

• workLoop(): threaded method executed. 
• parsePacket(): pre-analysis of the packet and forwarding if the packet fulfills the criteria (IPv4). 
• sendHeaders(): send data to the centralization point. 

 
Figure 16: Passive measurement system class diagram 

4.2.3.2 Sequence diagrams 
The timeline in UML is from the top to the bottom. Each arrow is method call. Each vertical line represents a 
class and its own life line. These diagrams illustrate the different method call available in the class 
MonitorDaemon and what this produces inside the other classes. 
 

 
 

Figure 17: Sequence Diagram 1 for the MonitorDaemon class 
 

LaunchCapture creates the CaptureController, launches the thread and then adds it to the data stored inside 
the class. 
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Figure 18: Sequence Diagram 2 for the MonitorDaemon class 

 
StopCapture stops the thread, destroys the instance of CaptureController and then removes it from the data 
stored inside the class. 
 

 
Figure 19: Sequence Diagram 2 for the MonitorDaemon class 
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4.2.4 Traffic processing 

4.2.4.1 Class Diagrams 
Since ProcessPipeline inherits from BaseThread, each instance of ProcessPipeline can be a thread.  
 
PipelineManager then manages all the instances of ProcessPipeline (i.e. the state of the threads and the 
related parameters).  
 
ProcessPipeline also stores all the analysis modules and the output module. 
 
The classes that will actually implement the traffic analysis and the export of results will have to respectively 
inherit from the classes AnalysisModule and OutputModule. In fact, we choose to implement the control 
functions on the data flow through the pipeline inside these two classes and ProcessPipeline. This leaves the 
programmer with less work to do when he tries to implements an analysis algorithm. E.g.: The class 
TraceBuilder which creates a trace in the pcap format inherits from OutputModule. 
 

Figure 20. Organization of classes for the Pipeline process 
 

PipelineManager 
 

This class aims at managing all the processing pipelines. 
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The methods of this class include: 
• forwardCapturedPacketsToPipelines(): forward all the centralized packets to all the 

processing pipelines. 
• addPipeline() / voiddeletePipeline(): add/delete a pipeline. 
• launchPipelineThread() / stopPipelineThread(): start/stop the associated thread. 
• setOutputModule(): set the output module of the process pipeline. 

 
ProcessPipeline 
 

This class aims at reading the data to be processed and at managing the processing of the data by the 
pipeline. To manage the processing of the data trough the pipeline, ProcessPipeline put the data 
through each AnalysisModule (if present) and then send it to the OutputModule (if present). 
 
The data stored inside the class includes a vector which contains all the analysis modules to execute 
(myAnalysisModuleVector) and an output module (myOutputModule). 
 
The methods of this class are: 

• initializeProcessPipeline() : initialize the processing through building the dedicated message 
queue. 

• workLoop() : threaded method executed. 
• processAnalysisInPipeline() : process the input data through the AnalysisModule(s) and the 

OutputModule. 
 
TraceBuilder 
 

This class aims at building a pcap trace from the captured packets.   
 
The only data stored in this class is a pointer to the trace.   
 
The method processOutput implements the inherited method from OutputModule which writes 
packets to the tracefile through the pcap primitives. 

 
4.3 Case a3: Cooperative distributed anomaly detection 
4.3.1 Attribute based local detection of anomalies 

4.3.1.1 Specifications 
Our system will follow the principle introduced in Section 2. For this purpose, we have implemented a two-
stage Anomaly Detection System (ADS). The first step aims at detecting any suspicious traffic in order to have 
no false negative (at the expense of the number of false positives). The second step aims at using a 
classification mechanism in order to eliminate the false positives and just keep the true positives. 

4.3.1.2 Global architecture 
The system will be implemented as an analysis module inside our traffic analysis framework presented in the 
implementation section of the Use Case a2 (see Section 4.2). For the final online version, we plan to have two 
threads running.  

• The first one is the one from the process pipeline. It is launched and stopped through the traffic 
analysis framework. 

• The second one performs the anomaly detection. It is launched when the analysis module (inside the 
traffic analysis framework) is created and stopped when is it is destroyed. 

 
The code running in the process pipeline (cf. Use Case a2) simply stores the packet captured according to the 
specified granularity inside what we call a set of packets. Every time a time slot is finished, the process pipeline 
forwards the set of packets to the ADS inside the second thread. A system of buffer containing sets of packets 
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is implemented inside the ADS in order to cope with the fluctuation of the amount of data to process. The ADS 
processes the sets of packets in a FIFO order. 

4.3.1.3 Algorithm structure 
 
1.  Pseudo-algorithm 
 
This algorithm is executed on each set forwarded by the process pipeline. The algorithm follows the two step 
architecture presented in the specifications (see section 4.3.2.1.). First, we analyze the network and detect the 
anomalous slots through the functions Process_Network_Data and Find_Anomalous_Slots. Then, we only keep 
the slots at the network level /24 and we classify them through the function Classify. 
 

function CLASSIFY (address) 
GENERATE_MATRICES (address) 
search matrices 
classify and identify 
 
function NADA_ANALYSIS () 
PROCESS_NETWORK_DATA () 
FIND_ANOMALOUS_SLOTS () 
FOR each anomalous slot found in address at level /24 
CLASSIFY (ADDRESS) 
ENDFOR 
 
main () 
Algorithm: 
NADA_ANALYSIS() 

Table 3. Pseudo-Code for the new NADA in offline mode 
 
2.  Network data process 
 
Once the set of packets is received, all the destination networks that appear in that set of packets are 
extracted in three prefix lengths: 8, 16 and 24 by the function Process_Network_Data. For now, this restriction 
in terms of prefix lengths limits the analysis of our system to three network levels. Extending this to any level is 
easy, but performance and memory consumption will suffer greatly. 
 
The result of this extraction is a three levels linked-list, where an element of this list represents an address and 
also contains a pointer to the next level (this is actually represented as next byte). Like this, the destination 
address 140.93.4.4 would result in the node 140, with next byte pointing to the /16 address prefix 140.93, 
which in turn would have a next byte pointing to /24 address ,prefix 140.93.4. Having the whole list of 
addresses in an easy to find manner makes it possible to calculate all the time series for all the addresses in a 
single run through the forwarded packets. 
 
The function Process_Network_Data also calculates the mean, the variance and the standard deviation of all 
the metrics for all the addresses extracted at the current level. It also saves the different metrics used for the 
detection (#packets, #bytes, #SYN) for the current time slot (or set of packets) for each of the networks (so 
when applying the formulas we have all the necessary information). 
 
3. Anomaly detection 
 
The algorithm then searches for anomalies through the function Find_Anomalies. It sweeps through all the 
found addresses at level /24. When a network is found anomalous for any of the parameters, the network is 
added to a list of anomalous networks and the algorithm tries to classify the anomaly. To do so, the algorithm 
launches the function Process_Host_Data passing the extracted network as parameter. 
 
4.  Anomaly classification 
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The following paragraph deals with the classification inside the function Process_Host_Data. We use hash 
tables and several linked list to store the data needed for the processing. There are 7 hash tables (for the 
mappings between key, i.e. source IP or source IP/source port, and id, and the opposite). 
 
The function Apply_Formula processes all data inside the network list to generate the matrices. 
 
The function Classify is then called to apply the previously established rules of classification to the detected 
anomalies in order to eliminate the false positives among all the anomalous alerts. These rules are built 
through the use of several attributes with some conditions over their values. The attributes used in each rule 
and the related thresholds have been chosen through expert knowledge. 
 
At the end, we obtain a list of anomalies with all their characteristics: source (port/IP), destination (port/IP), 
type of attack, etc. 

4.3.1.4 Data structure 
In order to store the data extracted from the set of packets, we use different data structures. We will here 
expose the main structures. We will first expose the different structures generated by Process_Network_Data 
to store the addresses from the sets of packets. The second part of this section will address the data generated 
by Find_Anomalies to describe the anomalies found. 
 
1. List of addresses 
 
The struct address_properties is used to store the statistics for a network/mask for the three metrics (#packets, 
#bytes and #SYN) used for the detection step of our ADS. There are three instances of this structure in the 
structure address_list. 
 
struct address_properties { 
 int mean; 
 uint64_t variance; 
 uint32_t curr; 
 uint32_t ant; 
}; 
typedef struct address_properties address_properties_t; 
 
Here is a detail of all these variables: 

int mean:   mean for this particular variable over all slots 
uint64_t variance:   variance for this particular variable over all slots 
uint32_t curr:   temp variable for calculating P (this would be Xi+1) 
uint32_t ant:   temp variable for calculating P (this would be Xi) 

 
This structure is used inside address_list to store the address and the mask for the network. 
 
typedef struct{ 
 struct in_addr ip; 
 uint32_t mask; 
} address_t; 
 
This structure is used to store the IP address from the sets of captured packets. 
 
struct address_list { 
 address_t address; 
 int *deviation; 
 unsigned int *pktcount; // per slot 
 struct address_properties *properties; 
 struct anomaly_list *anomalies; 
 struct address_list *next_octect; 
 struct address_list *parent; 
 struct address_list *next; 
}; 
typedef struct address_list address_list_t; 
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Here is a detail of all these variables: 

address_t address:  address of the current address (including mask cf. address_t). 
int *deviation:   holds the original threshold (sigma*K) for each variable (PKT, SYN, BYTES). 
unsigned int *pktcount: 
struct address_properties *properties: statistics of the current address 
struct anomaly_list *anomalies: list of anomalies in this address 
struct address_list *next_octect: pointer to the next level in IP network (e.g. we are at 140.93.0.0 and 
   this points on 140.93.4.0). 
struct address_list *parent: pointer to the previous level in IP network (e.g. we are at 140.93.0.0 and 
   this points on 140.0.0.0). 
struct address_list *next:  pointer to the next IP network inside the same IP level (e.g. we are at  
   140.93.0.0 and this points on 140.94.0.0). 

 
2. List of anomalies 
 
This structure is used to store the anomalies for a specific network. All the tables (find, grows, impact, 
impactlevel, duration, decrease, children) store the different value for the metrics of the anomaly. The value 
NVAR counts the number of metrics used during the detection, i.e. NVAR = 3 (#packets, #bytes and #SYN). 
 
struct anomaly_list { 
 slot_t *slot; 
 unsigned pktcount[2];  
 int find[NVAR]; 
 int grows[NVAR]; 
 int strongestvar; 
 float impact[NVAR]; 
 int impactlevel[NVAR]; 
 int duration[NVAR]; 
 float decrease[NVAR]; 
 int children[NVAR]; 
 int destcount; 
 struct responsible_list *dest; 
 struct anomaly_list *next; 
}; 
typedef struct anomaly_list anomaly_list_t; 
 
Here is a detail of all these variables: 

slot_t *slot:   pointer to the first time slot where the anomaly occurred 
unsigned pktcount[2]:  packet count separate for each slot 
int find[NVAR]:   anomaly present on each of the 3 metrics (packets, bytes, SYN). 
int grows[NVAR]:   increasing anomaly on the next slot on each of the 3 metrics. 
int strongestvar:   which metric among the three have the strongest variation. 
float impact[NVAR]:  percentage of "variation" that this anomaly contributes to the last level 
   that it is responsible for (imagine if an anomaly at 1.1.1/24 has a P of 500, 
   and an anomaly at 1.1/16 has a P of 450, and there's no anomaly at 1/8, 
   then the impact for that metric will be 500/450) 
int impactlevel[NVAR]:  the last level that the anomaly "impacted" for each metrics (i.e. in our  
   example above, the impactlevel would be 1) 
int duration[NVAR]:  the duration of the anomaly in number of time slots 
float decrease[NVAR]:  biggest decrease on each of the 3 metrics 
int children[NVAR]:  number of anomalies inside all the networks which are in the next level in 
   IP network(next_octet) of the network where this anomaly list is located 
int destcount:   number of IP addresses target of the anomaly 
struct responsible_list *dest: pointer to the data structure with the details about the destinations of 
   the attacks 
struct anomaly_list *next: 



FP7-ICT-2007-2 – ECODE Project (223936) 
 
 

Deliverable 3.2                                                            Page 33 of 54 

4.3.2 Distributed detection of anomalies 
 
We will first present an abstracted and generic description of our proposed state exchange scheme. Let us 
assume that we have a network with M nodes in N that are connected through a given graph (N, E) with 
edges in E. Each node i observes at time k a state vector Xi[k] = X1

i[k],...,XL
i [k]( )T . The state vector can 

be any set of numerical metrics that the node has observed, e.g. netflow-like information, or measured load, 
or the sensed metric from the environment in a sensor network. This definition of state vector covers virtually 
all scenarios where nodes want or need to exchange numerical information. We will use bold characters to 
represent vectors of variables and light characters for single variables. All vectors are assumed to be column 
vectors. We will assume that Xi  is a centred Gaussian stochastic process. We will later discuss the effect of 
deviation from the Gaussian hypothesis. The estimated value of the state vector of node i at node j is written 
as ˆ X i, j [k] . For readability, we will frequently drop the time index for vectors. We assume that each vector, 
unless otherwise stated, is a multidimensional stochastic process with independent temporal samples. 

4.3.2.1 Linear Estimation 
 
A crash course in linear estimation, see Annex 2. 

4.3.2.1 Source Compression 
 
A crash course in source compression, see Annex 3. 

4.3.2.3 State Sharing and Compression  
 
To explain how the state-sharing scheme works, we will describe a simple one hop scenario. In this scenario, 
we assume that m nodes are all connected to a node c. All these m nodes send some information to the node c 

such that an approximation ˆ X [k],    k =1,...,n is derived at this node. Node c may thereafter re-forward the 
estimated states to the other nodes. Obviously, one solution consists in sending the exact values of the state 
vector to other nodes. However this solution suffers from several drawbacks. First, this will results in wasting 
the bandwidth, as the state elements at different as well as at a single node, might be correlated. By making 
use of these correlations one should be able to reduce largely the number of bits to send. Secondly, we 
assumed that the nodes are selfish, i.e. they want to send as much as needed and not more. Sending the entire 
state vector is therefore the last resort. When a node has disclosed all its states it has nothing else to trade and 
he is not even insured that the other node acting as game player will give him back any information about its 
own states. We will describe here how to address these two issues.  
 
1. Compression by sampling 
 
Let's first deal with the efficiency of the communication between the nodes. A bandwidth cautious node will at 
first attempt compress the data to be sent to the other node. Let's assume that the node is ready to consume 
up to R bits per time step to send its state to the node c. A first and simple solution to reduce the bandwidth 
and to make it fitted in the R bits per time steps budget is to sample the states and to send the samples in 
place of all values. As the state values are correlated, applying 1: n sampling reduces the consumed bandwidth 
by a factor of n and .One can take advantage of the correlation to estimate the missing values. The sampling 
can be done temporally (choosing 1:n of temporal indices) or spatially (choosing 1: n of nodes), or spatio-
temporal (mixing temporal and spatial sampling). Indeed the performance of such a sampling depends on 
temporal (correlation between successive samples of a single state variable) and spatial (correlation between 
variables of the state vector of a single node or between state variables of different nodes) correlation. We can 
formalize the sampling solution by observing that if we group sampled values over a time period of length T in 
a vector Y, this vector can be described as Y=CZ, where Z= X1

i[k],....,X1
i[k−T],...,XL

i [k],....,XL
i [k]( ) of 

dimension LT is constructed by concatenating T state vectors Xi[k],    t =k,....,k−T; the projection matrix C is 
a 0-1 matrix where Cij =1 if the j’th value to be sampled is the i’th value in the vector Z. This is the vector Y 
that is sent to c. At node c, the unsampled values are reconstructed by applying linear estimation formula with 
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projection matrix C and V =0. However, this derivation needs the knowledge of the covariance matrix of Z. 
As we assume stationary state vectors, this covariance matrix can be sent once at the beginning of the 
communication and can be used thereafter. As this transmission will be done only once its effect on the 
transmitted rate tends to become negligible. 
 
2. Local compression 
 
A second solution consists of compressing the state vector of each node independently from other nodes. In 
this setting one takes advantage of the temporal and the spatial correlation in a node state vector Xi[k] to 
reduce the amount of information to be sent. Let's assume that the temporal correlation on variable Xj

i[k] 
becoming negligible after T steps. We construct at the node the vector 
Z= X1

i[k],....,X1
i[k−T],...,XL

i [k],....,XL
i [k]( ) of dimension LT   described above. This vector behaves as an iid 

vector (as it encloses all temporarily correlated valued up to the T steps horizon), so we are falling into what 
described previously in the crash course on compression. As the elements of Z are local, its covariance matrix 
is easy to derive locally and one can easily apply the KLT to it to derive the orthonormal projection matrix 
ULT ×LT . The quantization step results in a vector Y = U L*

Z + V  that is transferred to the node c with a rate 
R. The state vector elements Xj

i[k] are reconstructed using linear estimation formulas and results in an error 
variance that is known. To enable the reconstruction of Z, we need to send one time to node c the covariance 
matrices 

Z
∑  and 

V
∑ as well as the projection matrix U L*  that has been used. However as these values 

have to be sent only a single time, the effect of the transmission of these data on the overall transmission rate 
vanishes with time. Can we do better and attain a lower MSE with the same transmission rate R? The answer is 
yes as we have not exploited all the existing correlation. There might be some correlation between the state 
vector of the nodes and by exploiting this correlation one can attain a better performance. We will present in 
next section how to achieve this. 
 
3. Distributed compression 
 
In the distributed setting we are assuming that the node i sends to the node c a noisy projection 
Yi = C iZ i + V i. Our goal is to derive the projection C i and the quantization noise parameters V

i  such 
that the central node receiving at most mR bits per time steps can estimate the state vectors Z i with a 
Minimal Mean Squared Error. At node i we have to choose the optimal projection C i and the quantification 
noise V

i assuming that the node i has access to the information sent by other nodes. Let's define   Z  as the 
vector build by concatenating all local state vectors, Z i of node c neighbours. We also define   Y

i as the 
vector containing all information available at node c besides the information sent by node i, i.e.   Y

i is built by 
concatenating all received vectors Y j,    j ≠ i  with the state vector of node c, X c . Now let’s assume that 
node i is not sending any data to central node c. Therefore the best estimate of Z i at node c knowing the 
vector   Y

i can be obtained using linear estimation formulas. However this estimation will entail an estimation 
error we denote by   W i. As the node c is already aware of   Y

i, node i has just to send an approximation of 
  W

i to improve the estimation of Z i. This observation is the key to reduce the amount of information that 
has to be given by node i to node c. We have therefore to estimate   W i at node i and to send this variable in 
place of Z i. In [distKLT] a derivation is provided that estimate   W i and that obtains the optimal projection 
C i and quantization noise V

i  to send information validating the transmission rate budget. By following this 
approach one can construct a distributed compression scheme to exchange node states with the central node. 
This is this last scheme that we are going to use and to adapt to our setting of distributed anomaly detection. 
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5. Experimentation 
 
5.1 Case a1: Adaptive traffic sampling and management 
5.1.1 Performance objectives, and evaluation criteria 
 
Collected measurements can decide on how to tune the sampling rates inside the network. We consider for 
this purpose an important monitoring application, the estimation of the volume (in terms of number of 
packets or bytes) of some chosen network flows. A flow is a set of 5-tuple flows that share some common 
features as the source IP address prefix, the destination IP address prefix, the same ingress and egress routers 
inside the network, etc. At the limit, a flow can be one 5-tuple flow or even the entire network traffic. Given a 
set of flows to monitor, the machine learning engine should progressively tune the sampling rates in routers in 
such a way to minimize the global estimation error. 

5.1.1.1  Scenario 
Consider N traffic flows whose volumes in packets are labeled F1, F2…FN. We denote by, 1, 2… N,, the 
corresponding estimators. Let P = (pk)k=1..M be the vector of sampling rates in the different monitors of the 
network (a monitor is equivalent to a router interface). There are in total M monitors. The target of the 
machine learning engine is then to find the vector P that minimizes the sum of normalized estimation errors: 

 

 
 

Each flow Fi is formed of a set of 5-tuple flows whose volumes are denoted by Sji. Again, denote by ji the best 
estimator for the size in packets of each of these 5-tuple flows. One can then transform the optimization 
problem into minimizing the sum of the normalized estimation errors of the sizes of the 5-tuple flows: 
 

 
 

This minimization is carried out in the following way. Suppose one decides to reduce (resp. increase) the 
sampling rate by δ in the least (resp. most) significant monitor. The task is to find the monitor k having the 
smallest (resp. largest) absolute value for the following partial derivative sum and to decrement (resp. 
increment) its sampling rate by δ: 
 

 
 
In the following, we show how such estimators for the 5-tuple flow sizes are formed and how the partial 
derivatives of their variances are obtained. For the Fi themselves, which are unknown, we simply substitute 
them by their estimations, i.e. i = . 
 
Note that the volumes of flows are measured in packets. The passage to bytes can be made by multiplying the 
size in packets by the average packet size, which we suppose true for large flows (stationary packet size). 

5.1.1.2  Local flow size estimation 
Consider a 5-tuple flow Sji crossing monitor k whose sampling rate is pk. Let skji be the number of packets 
sampled from this 5-tuple flow in the monitor (this number could be zero). Using information, one can derive a 
first estimation for the flow size of the flow. The estimator that maximizes the likelihood is known to be: 
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Under independent sampling of packets with probability pk, the number of packets skji sampled from an 
original 5-tuple flow Sji follows a binomial distribution whose variance is well known and equal to: 

 
 

It follows that this local estimator for the size of a 5-tuple has a variance equal to: 
 

Var( ) =  
5.1.1.3 Combining measurements 
We estimate the volume of a 5-tuple flow as being the sum of the weighted sum of the local estimators done 
in the monitors along its path. This gives the following global estimator for 5-tuple flow j belonging to 
aggregate flow Fi: 

ji =  =  with   
 
Replacing the variances by their expressions given in the previous section, substituting the second equation in 
the first one, and simplifying by Sji, we get: 

ji = 1/  
 

With:  and  
 
Note in particular how the  and the  are the same for all 5-tuple flows that follow the same path, 
which eases a lot the calculation. As for the variance of this estimator of 5-tuple flow sizes, it is simply equal to: 

 

 

5.1.1.4 Reconfiguring Monitors 
The variance (or mean square error) of 5-tuple flow size estimation is very important for the determination of 
the global system accuracy and the monitor where to tune the sampling rate. For 5-tuple flow Sji and monitor k 
we can write: 

 
 
This represents the marginal gain in accuracy (loss in the variance) when the sampling rate of monitor k is 
increased by a small step δ from the perspective of estimating the size in packets of flow Sji. As expected, this 
gain is always positive when increasing the sampling rate (more sampling more accuracy). It also decreases 
when pk increases, which suggests that the estimation error follows well a continuously decreasing and convex 
function with the sampling rate, a condition required for the uniqueness of solution in non-linear optimization 
theory. By plugging the expression below which sums the accuracy and normalize it over all 5-tuple flows 
forming the traffic of interest, one can easily find the total gain (resp. the loss) in accuracy when the sampling 
rate of monitor k is tuned up (resp. down) by some small step. 
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This total gain (resp. loss) is from the perspective of the traffic accounting application. By testing all monitors, 
one can find the best sampling rate to tune up or down on the way to the optimal configuration. 

5.1.2 Methodology: scenarios and tools 

5.1.2.1 Validation scenario of our Adaptive Traffic Sampling and Management Platform  
To emphasize the practical utilisation and the scalability of the developed platform, we choose to reproduce 
the GEANT backbone topology. The GEANT network is a pan-European backbone that connects Europe’s 
national research and education networks via 23 routers. On the other hand, we choose to replay different 
traces collected at a transpacific line from the MAWI working group traffic archive (we use the traffic captured 
on some high speed link in a backbone transit network between 9:00AM and 11:00PM on 03/03/2009). Traffic 
traces are made by TcpDump, and then, IP addresses in the traces are scrambled by a modified version of 
Tcpdpriv (http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html/). For traffic dispatching over different access networks 
(European countries in this experiment), we associate different weights to the 23 Autonomous Systems (AS) 
connected to GEANT based on the importance of the traffic they are expectedly generating. We infer these 
weights from the populations of the countries represented by these ASes and the capacities of the links that 
connect them to their respective access routers in GEANT. Note that we run the three services composing our 
platform within three separated machines. 

5.1.2.2 Experimental results (Platform validation results) 
In the following paragraphs, we validate the effectiveness of the traffic emulation service and especially of the 
dispatching module it incorporates. We track the number of sampled 5-tuple flows and the number of packets 
across the different edge routers to check whether they follow the access network weights (or traffic matrix) 
predefined in our experiment configuration file. 
 
Figure 21 depicts the evolution of the network-wide monitored number of flows in function of the sampling 
rate (variation is kept identical for all routers). As expected, the number of flows decreases linearly as we 
decrease the sampling rate in all the access routers. Indeed, if S is the size of a given flow, then the probability 
that this flow is sampled given a sampling rate p is equal to 1 − (1 − p)S, which can be approximated by p.S for 
small p. The number of sampled flows Np can then be approximated by p.E[S].N, where N is the total number 
of original flows. This latter quantity clearly decreases linearly with the sampling rate. 
 

 
Figure 21. Number of Sampled Flows for different sampling rates 

 
Next, we look at the effectiveness of the traffic emulation service and especially of its dispatching mechanism. 
Here, the purpose is to (try to) answer the following question: does each AS generate as much traffic as the 
importance of the weight associated to it? Towards that, we start by plotting in Figure 22 the number of 
prefixes per AS function of the weights associated to AS. The resulting curves remain linear for different prefix 
lengths. So, we conclude that our emulator dispatches the prefixes to AS without any bias. 
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Figure 22. Prefixes dispatching 

 
Then, we look at the number of generated flows, ingoing and outgoing packets per AS in Figures 23, 24 and 25, 
respectively. We notice that for the three prefix lengths (/16, /24 and /32), the number of generated flows as 
well as the number of ingoing/outgoing packets scale with the AS weights but do not fit a perfect line. 
Nevertheless, the fitting improves when the prefix granularity becomes finer. This improvement results from 
the presence of very large prefixes (ex: prefix /16 including different servers’ IP addresses which are generating 
a large volume of traffic) of different volumes that, when dispatched over the AS, cause such deviations in the 
traffic; the coarser the prefix the more important this phenomenon. We illustrate it on prefixes of length /32 
(we plot the distribution of the prefix /32 sizes, we mean by size the number of packets from a given ip address 
that belongs to the prefix /32), for which we plot the distribution of their sizes (in packets) on a log-log scale in 
Figure 26. Clearly, there is a power-law behaviour leading to very large prefixes compared to the average 
prefix size (these are servers, heavy users, etc). To improve further the fit, one can run the dispatching at 
another finer granularity, the 5-tuple level. This finer granularity enables our dispatching algorithm to split a 
large set of 5-tuple flows generated by (or destined to) a single /32 prefix to different AS. As it can be observed 
from Figures 23, 24 and 25, the number of generated flows and ingoing/outgoing packets better fits now a 
line. Even though it preserves the notion of connections, the 5-tuple dispatching still has the problem of 
altering the pattern of activity of servers and end hosts. The choice of the best prefix length should be decided 
by the tradeoff established between traffic realism and AS weight respect. 
 

 
Figure 23. Flows dispatching 

 

 
Figure 24. Ingoing packets dispatching 
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Figure 25. Outgoing packets dispatching 

 

 
Figure26. Prefixes sizes distribution 

 

5.1.3 Future work 
As a future work, we intend to develop an API that introduces wide collaborative sampling methods within the 
traffic monitoring and sampling service. This API will be of a great help to us towards studying and developing 
such distributed sampling approaches. 
 

5.2 Case a2: Global monitoring 
5.2.1 Performance objectives, and evaluation criteria 
The global monitoring has to be evaluated according to two dimensions: 

1. It must be able to capture fully and accurately a trace of all packets passing through it. This means 
checking that all packets on the link have been captured and that the timestamp is accurate. 

2. When exchanging information between monitoring nodes, the related traffic has to be as transparent 
as possible, i.e. as low as possible and not interfering with the background traffic of users. 

5.2.2 Methodology: scenarios and tools 

5.2.2.1 Validation of the capture module 
The methodology for validating that the monitoring is able to capture accurately a trace of all packets requires 
comparing its resulting traces with a reference trace. For getting a reference trace, we are using a hardware 
capture technique which is guaranteed to provide perfect results: we use for this purpose a DAG system. The 
ECODE capture and the DAG systems are located on the same link and then are crossed by the same traffic. In 
addition, the times at which a packet is crossing the two capture system are very close as they are related to 
the physical propagation time on a cable or fibre (few centimetres between the two systems in our 
experiments). The difference is hardly measurable at the considered time scale (few microseconds). Then, it is 
sufficient to check that all packets captured by the DAG system are also in the trace captured by the ECODE 
one, and to compute the differences between their related timestamps. 
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5.2.2.2 Validation of the reporting system 
The validation methodology has already been described in details in ECODE deliverable D3.1 [ECODE 2009]. To 
summarize, it consists in emulating different network topologies with monitoring nodes on some of the links, 
and to measure the reporting traffic generated as well as the global performance of the network (delay, loss, 
etc.). The reporting traffic consists of all information about raw traffic data or results of preliminary analysis of 
raw traffic exchanged between different monitoring nodes in different location for permitting all monitoring 
nodes to have a global view of all the traffic transiting in the network. Then, the reporting traffic and the 
network performance are closely analyzed to check whether the reporting traffic is transparent for the 
network behaviour. 

5.2.3 Experimental results 
As for the moment only the capture system is available (the reporting system has not been completed yet), we 
just performed few evaluations of it. It however appears that the traffic traces captured by our system are 
complete (all packets are present) and the timestamps are similar. 

5.2.4 Future work 
For the moment, the validation of the capture system has only been performed on actual operating links, i.e. 
links that are largely unused at their maximum capacity. Future work will then include similar evaluations but 
this time generating ourselves high traffic burst to measure how much the capture system is sensitive to link 
load. Future work will also include the evaluation of the reporting mechanisms once its development will be 
complete. 
 
5.3 Case a3: Cooperative distributed anomaly detection 
5.3.1 Attribute based local detection of anomalies 

5.3.1.1 Performance objectives, and evaluation criteria 
The performance of the ADS will be evaluated on the false negative and false positive rates. The false positive 
rate is the ratio between the number of undetected attacks over the total number of attacks. The false positive 
rate is the ratio between the number of false alarms over the total number of attacks. 

5.3.1.2 Methodology: scenarios and tools 
We use two datasets to validate our algorithm: the METROSEC project traces with artificially created 
anomalies and the MAWI traffic repository with anomalies seen on the wild. We concentrate on DDoS 
anomalies for their importance and the number of different shapes they can appear with. If we are able to 
successfully separate different DDoS anomalies from normal traffic and from other types of anomalies, it might 
follow that general automated classification of network traffic anomalies is possible. Note that because of 
space limitation, only the most significant results are presented. A full description of the validation process and 
results can be found in [Fernandes 2008]. 
 
The METROSEC traces consist of real traffic collected on the French operational network RENATER with 
simulated attacks performed using real DDoS attack tools. This dataset was created in the context of the 
METROSEC research project to, among other goals, study the nature and impact of anomalies on networks' 
QoS. This dataset has been used for validation by a number of different studies on anomaly detection (e.g. 
[Scherrer 2007]). For the validation of our algorithm, we use 14 METROSEC traces containing DDoS attacks of 
intensities ranging from very low (i.e. 4-10% of the whole traffic) to very high (i.e. 87-92%). The attacks also 
vary in type (i.e. from TCP SYN flooding to Smurf attacks), number of attacking hosts (i.e. 1-4) and duration. 
 
On the other hand, the MAWI dataset has real undocumented anomalies. It is composed of 15 minutes 
packets traces collected daily at 2PM from a Japanese network called WIDE since 1999 to present. These traces 
are provided publicly after being anonymized and stripped of their payload data (see http://mawi.wide.ad.jp/). 
Although these traces are undocumented, the authors of [Dewaele 2007] started an effort to label anomalies 
found in this database. We randomly selected a total of 30 traces from 2001 to 2006 from which some had 
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already been identified by [Dewaele 2007] to contain DDoS anomalies. Using this second dataset is important 
to verify that our algorithm is not restricted to a single network or to artificial attacks. 
 
The validation of our algorithm is divided in two parts. In the first part, a (proper) statistical validation is 
performed using the METROSEC traces for the classification of DDoS anomalies. Different levels of sensitivity 
of the detection algorithm are used by varying its K parameter from 1.5 to 6. The classification signatures used 
are the same for all values of K, but only DDoS related signatures are considered. In the second part, the 
classification performance of our algorithm is tested for different types of anomalies (i.e. DDoS, port and 
network scan, and attack response) on both of the datasets presented in the previous section. K is set to a 
constant value 2, and all the signatures are enabled (including the same DDoS signatures used in the first part). 
A granularity of 30 seconds and the levels of aggregation 0, 8, 16, and 24 are used in the detection algorithm 
for both parts. 
 
For visualizing the performance of any anomaly detection tool it is possible to use ROC curves (Receiver 
Oriented Curves), in particular the probability of good detection depending on the probability of false alarm PD 
vs. PF. The ideal point for which all attacks would be detected and no false alarm raised is the left upper corner. 
The worst case is the diagonal, for which the results do not significantly differ from those obtained with 
random detection algorithms. ROC curve, among other solutions, provides a simple mean to compare the 
performances of different anomaly detection tools. 

5.3.1.3 Experimental results 
The classification performance for the first part of our validation was very similar for all values of K (i.e. the 
algorithm achieved a very high rate of correct classifications with a very small rate of misclassifications). The 
results obtained with K equal to 2 include 23 true positives (i.e. DDoS anomalies correctly classified), 2 false 
positives (i.e. non-DDoS anomalies misclassified as DDoS), 1 false negative (i.e. misclassified DDoS anomaly) 
and 455731 true negatives (i.e. non-DDoS anomalies classified as non-DDoS). Further analysis showed that one 
of the false positives was actually a real, unexpected DDoS ICMP reflector attack, and the attack responsible 
for the false negative was correctly classified in a subsequent anomaly. 
 
The results for the second part of our validation were equally promising. On the METROSEC traces, the non-
DDoS signatures found a total of 16 port scans, 13 attack responses and 2471 network scans. Manual analysis 
showed that all port scans and 10 attack responses were true positives. We were not able to identify the 
nature of the other 3 attack responses. Network scans were not manually analyzed, but the signature used 
(see Table 2) has a very low (if not inexistent) misclassification rate. Running the algorithm on the 30 fifteen 
minutes MAWI traces resulted in 22 DDoS, 4429 network scan, 5233 port scan, and 72 attack response 
anomalies in a total of 2.5 million anomalies detected. Manual analysis and cross-referencing with the results 
of [Dewaele 2007] revealed 19 true positives (of which 6 had not been detected by [Dewaele 2007]), 3 false 
positives that might be ICMP reflector attacks, and 9 (known) false negatives. The false negatives were mainly 
due to the detection algorithm used, and are not a limitation of our classification approach or of the signatures 
used. Preliminary analysis of the other type of anomalies showed that many of them were due to worm scans 
(and responses), with Sasser and Dabber variants being particularly common. 

5.3.1.4 Comparison (for experiments targeting the same objective(s) 
In order to compare the performance of our detection and classification algorithm based on the use of deltoids 
/ signatures with other similar tools, we applied the same method with other tools having similar objectives. 
We then evaluated the performances of: 

• NADA, i.e. an anomaly detection tool based only on the use of deltoids [Farraposo 2007] 
• A Gamma-Farima tool [Scherrer 2007] 
• PHAD (Packet Header Anomaly Detection) [Mahoney 2003] 
• Our tool based on deltoid plus signature based classification we decided to call NewNADA 

 
The ROC curves (see Figure 27) show True Positive vs False Positive rate of these tools for the considered 
traces and anomalies. It appears that PHAD is not very good as it appears as a little bit better than a random 
detection process. Gamma-Farima which uses more complex statistics than NADA exhibits better performance 
than NADA, but at the expense of attack constituting packet identification capabilities. Finally, it clearly 
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appears that our signature based classification algorithm added to the deltoid based detection has almost 
perfect results and is thus a good approach to follow for future work. 

 
Figure 27. Comparison of the respective performances of four different anomaly detection tools. 

5.3.1.5 Future work 
At this stage, we have tested the principle of the signature based methodology which proved to be very 
promising. However, the rules are sill static. But, as described in Section 3, we are in the process of integrating 
in this algorithm some machine learning techniques for being able to autonomously fixing thresholds in the 
existing signatures, as well as producing new rules for 0d anomalies. Future work will then essentially deals 
with assessing these two new capabilities of the algorithm. 

5.3.2 Distributed detection of anomalies 

5.3.2.1 Performance objectives, and evaluation criteria 
The aim is distributed anomaly detection is to achieve the best detection rate vs. false alarm trade-off. 
However, because of the distributed nature of our approach, we add another dimension that is the cost of the 
detection in term of information exchange rate between nodes.  

5.3.2.2 Methodology: scenarios and tools 
The analysed scenarios are constructed around a network with several monitoring nodes that want to jointly 
detect anomalies by exchanging their state data. As a toy example, we use IP-level traffic flow measurements 
collected over an academic backbone network. The data are derived by processing sampled flow data from 
every router of this network for a period of one week. In this dataset we distinguish between incoming and 
outgoing traffic, as well as UDP and TCP flows. For each of these four categories, we computed seven 
commonly used traffic features: byte, packet, and flow counts, source and destination IP address entropy, as 
well as unique source and destination IP address counts. The state variable to exchange there is of dimension 
28 (7 parameters per 4 categories). All metrics were obtained by aggregating the traffic at 1 second intervals 
resulting in a 28x86400 data matrix per measurement day per interface. We analyzed 41 interfaces distributed 
in 11 different routers. All values are stored as integer over 32 bits, resulting in an overall rate of 28x41x 
32=36768 bits per seconds for transmitting the data without compression. 
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5.3.2.3 Experimental results 
In the first setting, we assume that all these routers have to send their state vectors to a central aggregation 
point and we evaluate the performance of the scheme in steady state in term of level of MSE attained as a 
function of overall rate in term of number of bits per sample of 28 x41=1148 state values. The sum of variance 
over all states amount to 8.8x 1016. The best performance achieved by 1:2 sampling results in 18389 bits per 
seconds, transfer rate is 2.94x 1016. By using the schemes proposed in our work, we can achieve performances 
shown in Figure 28. 
 

 
Figure 28: Overall MSE achieved in the single hop scenario for the temporal, the spatial and the spatio-temporal setting 

 
Figure 28 shows three settings: in the first setting, we implement local compression; in the second setting, 
namely spatial compression, we implement the distributed scheme described previously but assuming that the 
temporal correlation horizon is 1 (that is not really the case); in the third setting, we  implement the spatio-
temporal compression scheme with a temporal correlation horizon T=5.  One can observe that with just 2000 
bits per sample (meaning a compression rate higher than 18) we can achieve an MSE that is 7 orders of 
magnitude less than the initial overall MSE, moreover the application of spatio-temporal compression results 
in an MSE that is 4 orders of magnitude lower than just doing a local compression. In particular, the spatio-
temporal compression achieves with just 400 bits the performance that the local compression achieves at 
2000 bits. It is noteworthy that the performance of the best sampling scheme (the 1:2 temporal sampling) was 
out of the graph and is not shown. It is worthy to discuss about the overhead involved in this scenarios. For 
this purpose, we show in figure the MSE achieved at one node as a function of the iteration number. Each 
iteration took 30 seconds as we estimated the covariance matrix using at least 30 samples to have an 
acceptable estimation. At each iteration, a new projection matrix has to be forwarded to the central point. We 
assume those projection coefficients are encoded into 16 bits. However the projection matrix for the spatio-
temporal cases is as large as the dimension of the initial space is 5 times larger. The number of forwarded 
projection varies as the value L*  changes. 
 

 
Figure 29: MSE achieved after a number of iteration of the distributed compression scheme for a global rate of 1200 bits per sample 
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Figure 29 shows that the number of needed iterations to stabilize the estimation is also different between the 
spatial and spatio-temporal scheme; the spatio-temporal scheme needs about 20 iterations where the spatial 
scheme needs about 40 iterations. Accounting all these sources of variation, for the spatial scheme we have 
observed an overhead around 119 Kbits, and for the spatial-temporal scheme an overhead around 962 Kbits. 
Accounting the difference in needed rate for achieving a given MSE between spatial and spatio-temporal 
scheme (for example, to achieve an overall MSE of 2x1014 we need 2000 bits per sample for spatial scheme 
and 400 bits per sample for spatio-temporal scheme), the difference in overhead between the two schemes is 
covered in 527 seconds (about 9 minutes of operation), and the difference between the uncompressed 
scheme and the spatio-temporal scheme is covered in 25 seconds, meaning that the use of the overhead is 
largely balanced with the benefit. The overhead analysis gives similar results for other values of global rate. 

5.2.3.4 Future Work 
Our work in the next steps will consists of developing a node state exchange module inside the ECODE 
architecture and to use the exchange states to implement anomaly detection. This will be achieved in the 
coming reports. 
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6. Recommendation for integration into common ECODE architecture (see 
D2.1) 

 
6.1 Case a1: Adaptive traffic sampling and management 
 
In the following paragraphs, we explain the way our architecture’ key components fit within the global ECODE 
architecture. We provide both a specification of the interface between the machine learning engine (MLE) and 
the monitoring engine (ME) as well as the interface between two different MLE(s).  

6.1.1 Communication between the MLE and the ME 
 
The adaptive traffic sampling and monitoring architecture that we are proposing relies mainly on a passive 
monitoring solution. The latter consists on the traffic monitoring and sampling service which we have already 
described in the paragraph 4.1.2. 
 
The traffic monitoring and sampling service will be incorporated within the ME (Monitoring Engine) 
component of the global ECODE architecture, and will relies on the CM (Cognitive - Monitoring) interface 
towards exporting the collected statistics to the MLE. The latter statistics consists on NetFlow Reports and 
more specifically on the Cisco Netflow(tm) version 5 packet format [Netflow].  
 
A NetFlow report format can be described as follows: [NF5_HEADER, NF5_FLOW, NF5_FLOW, NF5_FLOW …] 
 
Knowing that the NF5_HEADER describes the set of flows to report, it could be represented via the following 
structure:  

 
 
Regarding the NF5_FLOW, it describes a given 5-tuple flow and could be represented via the following 
structure: 

  
Note that for the evaluation of our adaptive sampling technique, we only use the fields followed by *.  
 
Once the NetFlow reports are received by the MLE component, The Translator block will take in charge the 
extraction of the fields followed by * and passing them to the Representation block. The latter will transform 
these statistics into tagged observations which will be stored later within the observation Information 
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Base (OIB). The stored information could be retrieved later by our ML algorithm by means of the Register (RL) 
or loaded (on-demand) by the Processing block. 
 
Note that the main goal of the architecture we are proposing is to develop an autonomous system for network 
monitoring and traffic management. Starting from a measurement task, like for example the calculation of the 
traffic matrix, the estimation of flow sizes and rates, the prediction of flow rate increase/decrease, or the 
detection of anomalies, the system will configure the sampling rates in network routers so as to optimize the 
accuracy while limiting the overhead (volume of collected traffic, packet processing and memory access in 
routers). So at some point, the algorithm which we already described in paragraph 5.1.1 and which we will 
incorporate within the MLE will need to change the sampling rate of a given ME at a given network interface. 
The latter communication will be ensured via the CM interface. The format of the control message to be 
exchanged is as follows: 
 

[Command = change the sampling rate, Network Interface = a.b.c.d, New sampling rate = x/y (y > 0) 
we send the couple (x, y)] 

 
This control message is sent from (triggered by) the MLE to the ME each time the algorithm we are proposing 
decides to change the sampling rate at a given network interface towards optimizing a given task. 

6.1.2 Communication between two different MLE(s) 
 
For the moment our ML algorithm is supposed to run within a collector node. However, as future work, we 
may envisage to deploy it in routers among which we will exchange information (between MLE(s)) to boost the 
convergence for the best measurement model and optimal router configuration. Such communication will be 
ensured by the CCr interface (sub- interface defined between representation modules of peering cognitive 
routers and used to exchange input to the machine learning processing).  
 
6.2 Case a2: Global monitoring 
 
The passive monitoring part of the monitoring engine (the active part being described in deliverable D3.4) is in 
charge of: 

1) Collecting packet traces from the forwarding plane I/O. Packet traces consist in collecting for each 
packet its IP and TCP headers with a very accurate timestamp. Depending on privacy laws, more data 
could be eventually captured (e.g. application headers, applicative payload): the monitoring system 
developed is versatile enough for offering a wide range of possibilities. 

2) Making the requested processing, with the result format matching the input format of the MLE’ 
translator. Let’s recall that our monitoring engine allows network designers and developers to 
configure the monitoring engine for performing any computing on the incoming traffic data: They just 
need to pass the pointer on the appropriate function (they have previously written) to the monitoring 
engine at any configuration phase. 

3) Transmitting them to: 
a. the other modules implemented in the Machine Learning or forwarding Engines 
b. the other monitoring nodes in other locations of the network when these latest need to get a 

global view of all traffic or performance measurements made on the global network under 
consideration. This functionality is one of the bases for implementing distributed machine 
learning algorithms easily. 

 
6.3 Case a3: Cooperative distributed anomaly detection 
6.3.1 Attribute based local detection and classification of anomalies 
 
For implementing the detection and classification algorithms, the following overall thread needs to be 
developed in the ECODE framework. A continuous process ensures that packet data is entering the monitoring 
engine which on its turn sends the required fields to the responsible module in the Machine Learning Engine. 
As previously, by default, IP and TCP headers are captured for each packet together with an accurate 
timestamp. But depending on privacy rules, more information per packet can be captured. 
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There, the two stages anomaly detection and classification process builds the needed traffic models (algorithm 
taken as an example in section 2.3.1 considers traffic deltoids, but any other traffic model can be considered 
for this detection process, e.g. Markovian, Gamma-Farina, etc.), isolates the possible anomalies and classifies 
them. Among the different kinds of anomalies that can be detected, we distinguish between legitimate (as 
flash crowd or alpha flows) and illegitimate anomalies (as attacks) regarding the management of the anomaly. 

• For illegitimate anomalies, it clearly means that the corresponding packets represent a useless load 
for the network. They then can be discarded. The Machine Learning corresponding module will then 
provide to the forwarding engine the characteristics of the anomaly in order to help it discard the 
faulty packets. At this stage, we have a first list of parameters characterizing anomalies (see table 1), 
but it still needs to be completed, as well as the alarm formats. 

• For legitimate anomalies which significantly impact network performance, a new way of managing the 
routing or the forwarding has certainly to be set-up. Therefore, the machine learning module 
concerned with anomaly detection provides to the routing and forwarding engines the characteristics 
of the anomaly issued from the detection and classification process, in order them to apply the 
appropriate counter-measures. 

6.3.2 Distributed detection of anomalies 
 
The integration of the distributed anomaly detection component into the global ECODE architecture is taking 
advantage of all parts of the architecture. Two major parts of the overall ECODE architecture cooperate during 
the distributed anomaly detection: the MLE (machine learning engine) and the ME (Monitoring Engine). 
However there is a major interaction between distant MLE in our case.  

6.3.3 Communication between the MLE and the ME 
 
In distributed anomaly detection, we assume that the ME is extracting continuously and at regular time 
interval a set of numerical traffic metrics that are going to be shared with other monitors or routers in the 
network. Indeed, the use of certain metrics are more valuable than others for the sake of anomaly detection 
however as our main goal is to deal with the distribution of anomaly detection we will assume that the right 
set of metrics has been chosen and these metrics are provided regularly to the MLE. This set of metrics is used 
in two ways: they are used along with estimates of the state metrics of other nodes for anomaly detection at 
the node itself, and they are also transferred along with remote states to node neighbours for propagation to 
nodes that have an interest in receiving these states.  Therefore, the communication between MLE and ME 
consists simply in providing all the metrics of interest gathered by the ME during the last reporting period to 
the MLE that will thereafter apply the linear projection and forward it to the neighbours. 

6.3.4 Communication between MLEs 
 
Because of its distributed nature distributed anomaly detection make an intensive use of the distribution 
module inside the MLE. Routers exchange regularly two types of data: linear projection sent frequently to 
neighbours (around one projection per second rate), projection matrices, along with preference lists that are 
sent in a lower rate (every time these values are changed). The communication will involve therefore 
forwarding of linear projection messages along with projection matrices and preference lists update. 

6.3.5 Communication between the MLE and the FE and the RE 
 
Whenever an anomaly is detected the MLE should take actions and implement them through the interfaces to 
the forwarding and the routing engine. At this stage of the project we have not yet formalized the corrective 
actions so this communication is not still formalized. 
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7. Conclusion 
 
The goal of the ECODE project is to develop, implement, and validate experimentally a cognitive routing 
system that can meet the challenges experienced by the Internet in terms of manageability and security, 
availability and accountability, as well as routing system scalability and quality. By combining both networking 
and machine learning research fields, the resulting cognitive routing system fundamentally revisits the 
capabilities of the Internet networking layer so as to address these challenges altogether.  
 
This deliverable more specifically addresses the first technological objective dealing with adaptive sampling, 
path monitoring, and anomaly detection. It also focuses on the implementation of each of these use cases. For 
each of the use cases, this deliverable describes how machine learning techniques have been used, and an 
evaluation demonstrates its benefits. Note also that the anomaly detection use case has been divided into two 
axes as two aspects are under concern: (1) the attribute based detection and classification of anomalies, 
especially allowing the detection of 0d attacks, and (2) distributed detection of anomalies for a detection at 
the network scale. Of course, at the end of the project, these two contributions will be put together. 
 
At this stage, the solutions proposed for the different use cases have been evaluated on dedicated local 
platforms by the partners in charge. They exhibit the gain in terms of performance and capabilities in using 
machine learning for network router functionalities. Last, section 6 indicates how the developments 
performed for the different use case will be integrated in the general ECODE router architecture. 
 
The next objective is to migrate the developed code on the ILAB platform, perform the full integration, and 
provide a complete performance and functionalities analysis. 
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Annex 1: Supervised and semi-supervised learning 
 
A1.1: Supervised Learning 
 
Principle 
 
Supervised learning is able to establish rules from labelled training data. The training data are made of pairs of 
objects. Each pair is composed of a multi-dimensional values and the associated output. The predictive model 
obtained through the learning phase is able to give an output value from any multi-dimensional input value. 
 
Semi-supervised learning consists of two steps. The first phase is supervised learning which is used to create a 
rough scheme of what the model is going to be. The second phase is meant to improve the result of the first 
phase through the use of unlabelled data. Supervised learning can be realized through different algorithms 
such as decision tree, support vector machines, etc.  
 
Example of supervised learning through decision tree 
 
We want to build a model to describe the behaviour of the golf players according to of several parameters: 
temperature, humidity and wind. 
 
We choose to use the decision tree algorithm. Figure 2 give the set of training data that will be used. 
 
 

 
 

Figure 2. Training data 
 
The algorithm uses all the data to create the rules that model the behaviour of the player according to these 
parameters. The result is the following (cf. figure 3), a tree that describes the player behaviour. 
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Figure 3. Model of the golf player behaviour 
 
A1.2 Unsupervised Learning 
 
Unsupervised learning aims at establishing how data is structured. In order to do so, unsupervised learning use 
unlabelled data and tries to find structures, key features or models that can describe the way the training data 
is organized and thus the way the system behaves. 
 
There are different techniques of unsupervised learning among which we can quote dimensional reduction, 
density estimation, and clustering, etc. A priori, these techniques are the most suited for our use case. 
 
Dimensional reduction tries to project the data from a set of great dimensions to a set with smaller 
dimensions. For example, PCA reduces the dimension of the dataset by replacing many correlated variables by 
a few ones. Let's quote few examples of methods of dimensionality reduction as for examples principal 
component analysis (PCA), multi-dimensional scaling (MDS). 
 
Density estimation is a family of methods for "one-class" problems. We assume that there is a set of 
representative observations which is part of a single class. The general objective of this method is to estimate 
the distribution of the observations and then predict whether or not a new observation should be considered 
as an outlier or a "normal" member of the single class. For examples, Bayesian network, mixture network, etc. 
are density estimation methods. 
 
Cluster analysis or clustering is the assignment of a set of observations into subsets (called clusters) so that 
observations in the same subset are similar in some sense. There are three types of clustering algorithms: 
hierarchical, partitional (e.g. k-means) and spectral. 
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Annex 2: Linear Estimation 
 
In distributed anomaly detection we have frequently to deal with situations where we have access to a vector 
of random variables Y = Y1 ,...,Yl( ) that is correlated with another hidden vector X = X1 ,...,Xm( ) . We 
wish to find an estimator ˆ X = f (Y)) of X that minimizes the Mean Square Error defined as 

e
∑ = E (X − ˆ X )T (X − ˆ X ){ }. In general, the Mimimal Mean Square Error (MMSE) estimator of a random 
variable is the conditional expectation. In the case when X and Y are jointly Gaussian, the conditional 
expectation estimator can be easily derived and becomes simply  

ˆ X =
Y
∑( )XY
∑ −1

Y 
Where, 

XY
∑ is the cross covariance matrix of X and Y defined as 

X
∑  and 

Y
∑  is the covariance 

matrix of Y. It is noteworthy that the covariance’s matrices 
XY
∑ and 

Y
∑ are finite size matrices that can 

be inferred using only a limited number of samples of X and Y, when the above estimation formula can be 
used to infer all samples of X. With this choice of estimator the MMSE of estimation ( D* ) becomes equal to 
the trace of the error covariance matrix  

D* = tr −
X
∑

Y
∑( )−1

XY

T∑
XY
∑ 

  
 
   

 
A particular case of interest is when Y is a noisy projection of X, Y=CX+V where C is a l x m projection 
matrix and V  is a Gaussian noise vector with covariance matrix 

V
∑ that is independent of X. Under this 

hypothesis the MMSE estimator becomes  
ˆ X = CT

X
∑ C CT

X
∑ +

V
∑ 

  
 
  

−1

Y 
and the MMSE variance D*  is: 

D* = tr −
X
∑ CT

X
∑ C CT

X
∑ +

V
∑ 

  
 
  

−1

C
X
∑ 

  
 
   

 
The above relations for the optimal estimator and the MMSE variance values raise some interesting 
comments. First the best estimator of X given Y is a linear projection of Y in a subspace determined by the 
cross-covariance 

XY
∑ and the covariance 

Y
∑ . We will see later that this last observation can be 

generalized to more complex settings. Secondly, one can clearly evaluate the gain of using Y for estimating X. 
If one did not have access to Y the variance of estimation would have been 

X
∑ ; now this value is reduced 

by 
Y
∑( )−1

XY

T∑
XY
∑ , so that one can evaluate the gain obtained by sending a vector Y and balance it 

against the cost (in term of bandwidth) of sending Y. A last interesting observation is that one can evaluate 
the impact of the added noise V , into the overall estimation. We will see later that this noise is directly 
related to the quantization used for transmission of Y and with the bit rate transmission. 
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Annex 3: Source Compression 
 
Very frequently, we have to apply a lossy compression to a sequence of n independent and identically 
distributed observations of a L-dimension random vector X = X1 ,...,Xm( ) , i.e. we want to represent n 
observed vectors X[k],    k =1,...,n using only nR bits. These nR bits are used to reconstruct an approximation 
ˆ X [k],    k =1,...,n. The estimation error resulting from this estimation is: 

Dn(R)= 1

n
E X[k]− ˆ X [k]

2{ }
i=1

n∑  

 
It is well known from the source compression literature when the multidimensional process X is Gaussian, an 
optimal compression scheme can be build by applying a Karhunen-Loeve Transform to the vector X followed 
by a quantization step. By optimal scheme we mean a compression scheme that results in a Mimimal Mean 
Squared Error (MMSE) for the given rate R.  
 
The optimal local compression scheme consists of two stages: a projection stage where the state vector is 
projected linearly into an orthonormal space and a quantization phase that consists of assigning the bit budget 
to different projection dimensions following a water filling argument. The basic ingredient in finding the 
optimal compression scheme is the covariance matrix 

X
∑ . This matrix is real, symmetric and positive semi-

definite, and it has a Singular Value Decomposition (SVD): 
X
∑ = UΛUT  

 
where U is a unitary matrix whose columns are the eigenvectors of the matrix 

X
∑  and Λ  a diagonal 

matrix, whose diagonal entries are the eigenvalues λi  of 
X
∑ in decreasing order. The matrix UT  maps the 

correlated vector X into a zero mean vector Z of uncorrelated components (that are also independent as X is 
assumed to be jointly Gaussian). The random component Zi is a zero mean Gaussian random variable with 
variance varZi{ }=λi. By choosing just K columns of the matrix U, resulting in the matrix U K , we can map the 
L-dimension vector X into a K-dimension orthonormal space with Zk =UkX where Zk contains the K first 
components of Z.  It can be easily shown that: 

Xk = Uk( )T
Zk 

 
is an approximation of X with a MSE equal to λk

k=K+1

L∑ .  

The second stage of the optimal compression scheme is quantization. As the components Zi are uncorrelated 
and Gaussian with variance λi , they can be encoded separately. The quantization step consists in assigning bits 
from the budget of R. bits to each independent source. The bit assignment follows a water-filling technique 
defined as follows:  
Let’s define L* ≤L as the largest integer satisfying 
 

d
L* =

∆
2

2R

L* λi

i=1

L*

∏
 
 
  

 
 
  

1

L*

≤λ
L*  
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The value L*  determines how many components of the vector Z are going to be sent. Now the number of bits 
ki  assigned to transmitting each component Zi is derived as: 

ki=
R

L* + 1
2
log2λi −

1

2L* log2
j=1

L*

∑ λj  

 
This step results in a quantization noise for each chosen component that can be modeled by a zero mean 
Gaussian term Vi  with variance d

L* , the signal sent after projection and quantization can be represented as : 
ZL*

= U L*( )X + V  
where V  is a Gaussian noise with a diagonal covariance. One can reconstruct/estimate the initial vector X by 
using linear estimation formula as: 

ˆ X = UL*( )TX
∑ UL*( ) UL*( )TX

∑ +
V
∑ 

  
 
  

−1

ZL*  
The MMSE resulting from this compression is obtained by the distortion-rate function D(R) that defines the 
MMSE as a function of R 

D(R) = L* d
L* + λ j

j= L* +1

L∑  

 
where d

L*  depends indeed on R.  
The above analysis can be easily extended to minimizing a weighted MSE[ 

Dn(w,R)= 1
n

E X− ˆ X ( )T diagw( ) X− ˆ X ( ){ } 
where diag w( ) is[a diagonal matrix with weight values on it diagonal. This consists simply of applying the 
above analysis to the vector diag w( )X where diag w( ) is a diagonal matrix with square root of 
weights on its diagonal. In particular if we want to exclude a variable from the minimization it is enough to set 
its weight to 0. 
 
 
 


