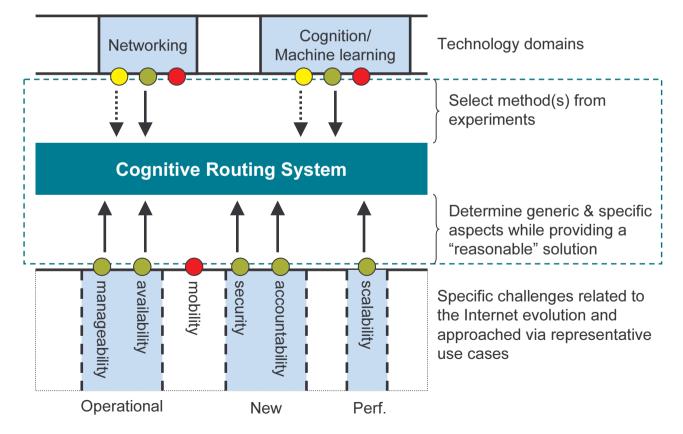
A Cognitive Routing System for the Internet

Dimitri Papadimitriou, & Benoit Donnet

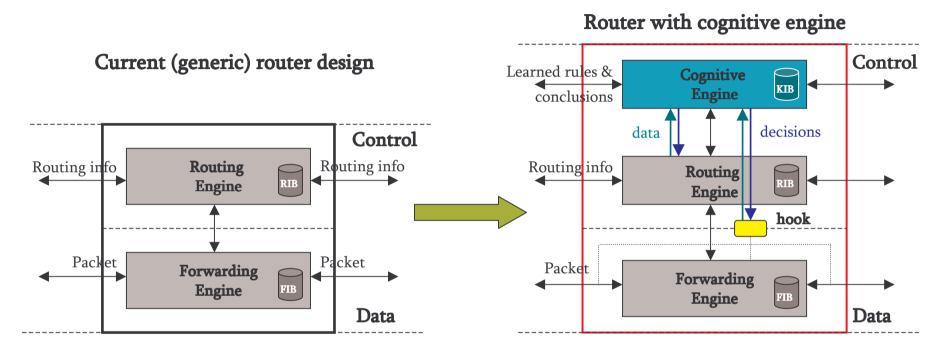
8th Würzburg Workshop on IP: Joint EuroNF, ITC, and ITG Workshop on "**Visions of Future Generation Networks**" July 21-22, 2008



Outline

- Introduction
- Cognitive Routing
- Knowledge Plane
- Positioning
- Challenges and Perspectives
- Conclusion

Introduction

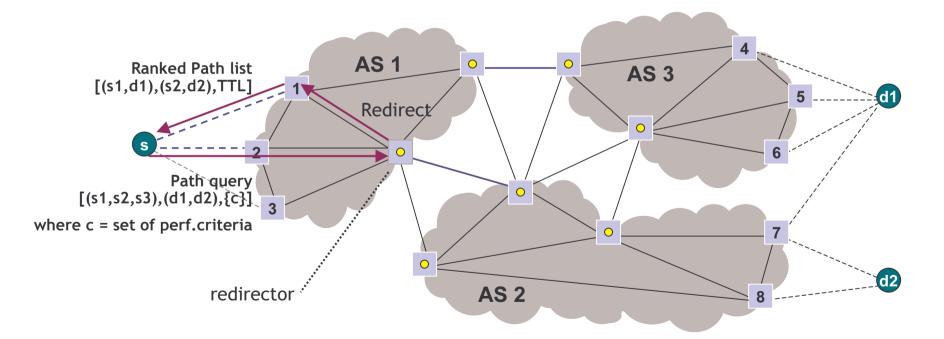

- Internet challenges and its evolution
 - Operational challenges: manageability/diagnosability, and availability
 - New challenges: security, accountability, and scalability (routing)
- Cognitive routing system: networking x machine learning technique

Why learning paradigm ?

- Similarity to the conditions traditionally encountered in classical machine learning problems:
 - Nature: events cannot be well characterized even when examples of such an event are available (inherent complexity in precisely characterizing an event)
 - Relationship: correlations and trends between events are hidden within large amounts of data associated to these events
 - Environment: changing conditions over time (in part., for routing system but also variability of user demands, expectations & behaviours)
 - Quantity: amount of available data is too large for handling by human intervention
 - **Evolutive**: new events are constantly detected/discovered
- Main concept: extend IP networking equipment, with a distributed cognitive engine based on semi-supervised, on-line, and distributed machine learning techniques

Cognitive Routing

Objective:

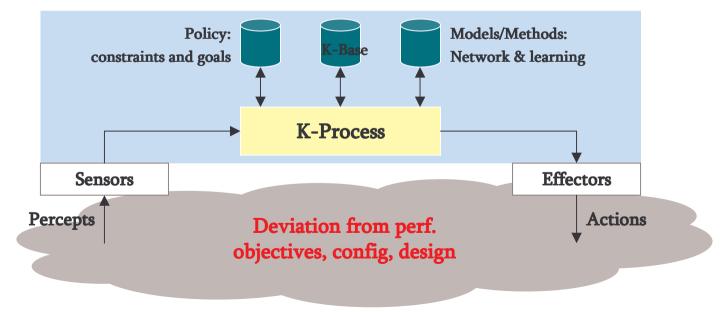

Augment existing routing/control paradigm of (system & network) lower-level data collection and decision making, with a cognitive engine that

- Enables system & network to learn about its own behavior and environment over time
- Analyzes problems, tunes its operation and increases its functionality and performance Cognitive engine using semi-supervised, online, and distributed machine learning

Example: User-network cooperation

Connectivity selection among multiple and multi-homed sites Example: $\langle s,d_1 \rangle$ via [{1,2,3} \rightarrow {4,5,6,7}] or $\langle s,d_2 \rangle$ via [{1,2,3} \rightarrow {7,8}] -> **select (s1,d1) over (s2,d2)**

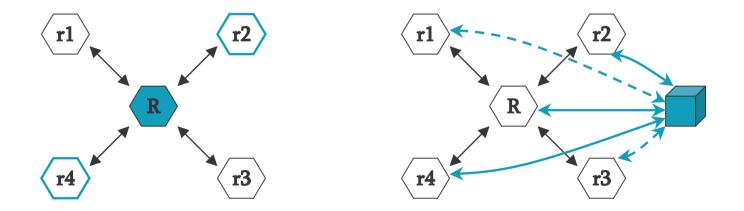
Edge routers path performance monitoring (passive or active) -> extract information from monitoring data (note: multiple cycles) so as to provide path quality prediction



Knowledge Plane (KP) - [Clark'03]

- Driving idea: abstract/isolate high-level goals from low-level actions Augment control system with a higher-level structure that addresses issues of "knowing what is going on" in the network
- Unified KP
 - Common standards/framework for "knowledge"
 - Structured based on knowledge, not task
- Objective: build a new network generation
 - Drive its own deployment and automate its (re-)configuration by learning from past to improve future performance
 - Diagnose its own problems (with imperfect and conflicting info)
 - Make defensible decisions about how to solve them (respond to problems/attacks in better timeframe than manual intervention)
 - Recognize/mediate conflicts in policies and goals

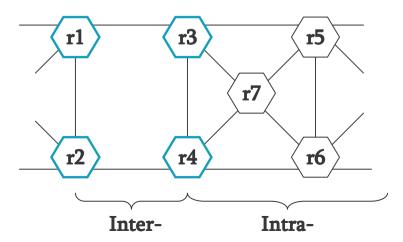
Knowledge Plane (KP) - Architecture

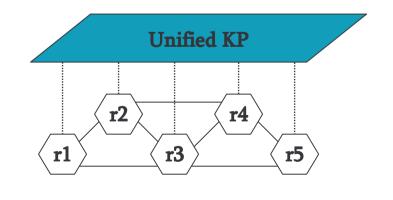

- **Core foundation**: ability to integrate behavioral models and reasoning processes into a networked environment
- Separate structure (breaking boundaries of legacy control system) sitting on top of the current control system
- Comprising cognitive tools and learning
 - Sensors: produce observations
 - KP: Process + Data structures: PIB K-base Models
 - Actuators/effectors: to change/alter network behaviour / environment

Positioning against KP

- Cognitive routing system should
 - Be modular instead of relying on a unified approach for development and deployment reasons
 - Examples: access vs core, edge vs intermediate router
 - Rely on network relative view (i.e. forwarding and routing) rather than network global view

Reason: prevent scaling issues, increase resiliency, and organic deployability




Positioning against KP

- Cognitive routing system should
 - Be architected taking into account inherent distributed properties and capabilities of forwarding and routing system
 - Example: intra- vs inter-domain routing
 - Example: flow vs aggregate forwarding

Instead of being constructed as a uniform and ubiquitous twodimensional structure (plane)

Reason: developability (sys.engineering) and adaptability

Positioning

- Cognitive routing system should
 - semi-supervised instead of supervised learning techniques
 - on-line instead of off-line learning techniques
 - distributed instead of centralized learning techniques

Challenges & Perspectives

- Set of networking use cases representative of future Internet challenges
- Applying machine-learning methods (using cognitive engine designed as set of functional blocks) to these use cases
- Experimental evaluation (using physical and virtual facility)

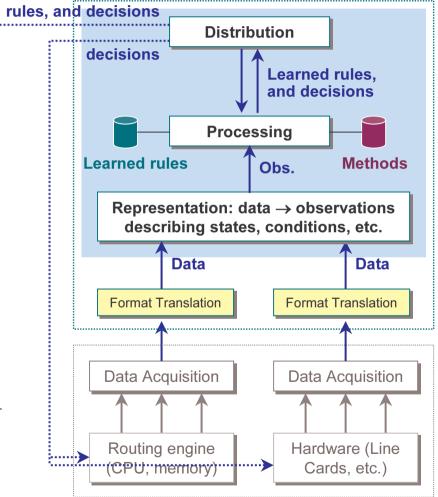
Technical Challenges	Use Case
Adaptive traffic sampling and management, path performance monitoring, and intrusion and attack/anomaly detection	Adaptive traffic sampling and management
	Path performance monitoring
	Cooperative intrusion and attack/anomaly detection
Path availability, network recovery and resiliency, and profile-based accountability	Path availability
	Network recovery and resiliency
	Profile-based accountability
Routing system scalability and quality	Routing system scalability and routing system quality (convergence, stability/ robustness, and stretch)

 \rightarrow Cognitive engine building blocks (architecture) and low-level components

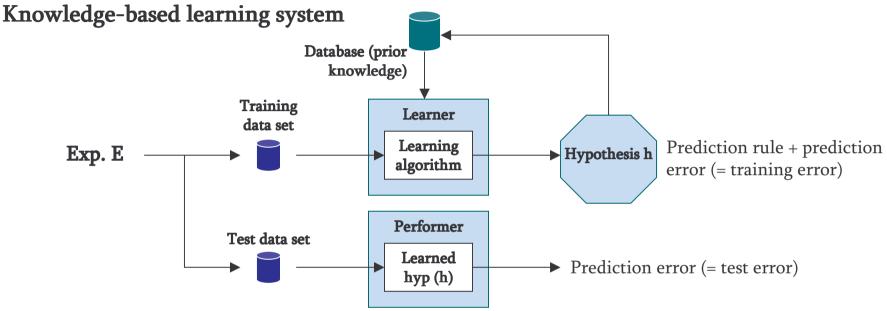
Challenges & Perspectives

Cognitive system

- Components, levels of interaction & coupling between components
- Communication protocols
 - Internal: between internal components
 - External: between cognitive engines


Performance gain

- Semi-supervised, and online learning
- Semi-supervised, online, AND distributed learning


Determine predictive value (->decision), and derive appropriate set of commands (directed to routing and forwarding engine)

Collected data translation & representation as information to cognitive engine

Determine impact on lower-level cognitive engine components

Challenges & Perspectives

• Algorithmic

- Which learning algorithms (on-line & distributed)?
- How well do these algorithms perform?
- Training data/examples
 - How much training data is sufficient to learn a task/model with high confidence?
 - Are some training examples more useful than others?
- Knowledge
 - When is it useful to use prior knowledge?
 - What is the best way to represent and utilize knowledge?
 - How to distribute/disseminate (route) knowledge?

Conclusions

Introduction of a new architectural component

- -> cognitive routing system:
 - 1. Improve and extend the Internet functionality by providing adequate solutions to the existing and foreseeable upcoming Internet challenges
 - Limit infrastructure and operational cost and complexity resulting from Internet growth (compared approach(es) consisting in continuously patching existing routing equipment)
 - 3. Ensure Internet viability by removing complexity, from existing components, but adding functionality