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Abstract—The update process in an IP router after a failure
is detected, is a complex process involving more than just
recalculating shortest paths. When statistics related to forwarded
traffic are not taken into account, which is generally the case, we
show that packet loss can be significantly higher than is strictly
needed. In this paper we present a combined control and traffic-
driven routing table update scheme which minimizes the packet
loss during the switchover, based on an efficient use and planning
of the central router process quantum. We discuss the parameters
of the algorithm and show its value in a simulation environment.

I. INTRODUCTION

During the last decade, network and internet usage has
grown to proportions that haven’t been seen before. Numerous
network services such as IPTV or VoIP using high speed
wired or wireless internet access, are now accessible for the
residential market. At the same time business services such
as Virtual Private Networks or Grids have a severe impact
on the network requirements. It is clear that we become
more and more dependent on networked services, and actually
more dependent on the network itself. These result into very
tight Service Level Agreements (SLAs), where five nine’s
availability becomes the common.

Availability depends on the maintainability and reliability
of the networked system and its components. The above
availability requirement results thus in reliability requirements.
The latter have resulted in numerous protection and rerouting
techniques at different network layers to ensure rapid detection
of, and switchover during failure events within the network.
Think p.e. about hardware specific methods for Bidirectional
Forwarding Detection (BFD) for failure detection, protection
mechanisms at the optical layer, or fast rerouting schemes
either at the Multi-Protocol Label Switching (MPLS) or IP
level (e.g. IP Fast Re-Routing (FRR)). Whereas proposed ap-
proaches often focus on the time performance of the recovery
process, they seldomly take into account the quality of the
recovery process itself (that is measured in packet loss). This is
related to the fact that in general, these techniques are agnostic
to the properties of the specific traffic flows that are forwarded
along the corresponding paths.

Nevertheless, a plethora of techniques exists to gather statis-
tics about traffic flows crossing routers (see section III-A).

This statistical data is however seldomly used in the process
of a router updating its routing and forwarding entries (the IP
router update process) as triggered by a failure or network
change. Given the fact that the update process can take up to
1 second for routers in large IP networks (see [1]), switching-
over an affected, high bit-rate traffic flow only after let’s say
400 ms, can have a high cost in terms of packet loss.

Therefore the goal of this paper is to improve the quality of
the recovery process, by i) investigating the IP router update
process, and ii) evaluating update mechanisms using traffic
flow data such as to decrease packet loss resulting from the
forwarding table update process as triggered by a failure or
network topology change.

The rest of the paper is organized as follows. Section II
describes and formalizes the IP router update process and
its characteristics. The next section (section III) discusses
possibilities to enhance the process in terms of reduced packet
loss, and experimental validations of the formulated strategies
are described in section IV. Finally the paper is ended with
notes on future work and a conclusion in section VI.

II. THE IP ROUTER UPDATE PROCESS

Larger IP networks such as the Internet, are partitioned
into ASes (Autonomous Systems) independently administrated
by Internet Service Providers (ISP) and structured in ”tier
levels”. Every AS comprises a collection of routers. These are
responsible for transferring data units (IP datagrams) across
the network infrastructure, and consist of a routing engine and
a forwarding engine.

When an incoming IP datagram (or packet) arrives at the
incoming interface of an IP router, the router looks for an
entry in its Forwarding Information Base (FIB), performing
a longest prefix match on the destination IP address of the
incoming packet, to forward the traffic towards its next hop.
The FIB can either be manually configured or can be populated
by a routing protocol. Because the forwarding decision is
taken independently at each hop, the forwarding process is
connectionless.

Peering routing engines exchange information using routing
protocols. These protocols ensure that routing information
is distributed allover the network (or the AS), such that



LFIB

Forwarding

Line card

SPT computation

LS database

RIB

FIB

Routing engine

Switching fabric
LFIB

Forwarding

Line card

3

1

2a

2b

3

LS PDU LS PDU

Data 

packet
Data 

packet

Fig. 1. The router update process

individual routers can maintain a consistent and up-to-date
full view of the non-local network topology or loop-free AS-
path to destination prefixes and react accordingly in case of a
topological failure. In the Internet, two main levels of routing
can be distinguished: intra-domain routing level determined
by interior gateway protocols such as the Open Shortest Path
First (OSPF, [2]) and IS-IS link-state protocols; and the inter-
domain routing level implemented by the Border Gateway
Protocol (BGP, [3]), a policy-based AS-path vector routing
protocol which distributes routing information originated by
routers belonging to different AS.

A. The LS router update process

For operational and scaling reasons, our investigation fo-
cuses on Link State (LS) protocols. Routers running LS
protocols, flood LS PDUs (LS Protocol Data Units) over the
network. These packets contain information about the local
links and MA (multi-access) networks a router is connected
to. All received LS PDUs are collected into a database (the LS
database) which allows a router to have a view on the network
link topology and to calculate (shortest) paths towards differ-
ent destinations (IP addresses) or network parts (IP network
prefixes). The LS database is updated by either detecting a
local connectivity change (e.g. failing link or interface), or by
receiving an LS PDU from a peering router. Two types of LS
PDUs can be received:

• LS Refresh: A node in the network has sent a refresh of
its status, involving no changes in the network.

• LS Update: A node in the network has detected a state
change in its link connectivity to an adjacent node or
network (addition or removal).

Only the second option is of interest for us, as it is the
direct trigger for the router update process which we intend to
investigate. The resulting update process can modeled in three
steps (see figure 1):

1) Re-computation of the shortest path tree (1), based on
the updated LS database.

2) Update of the central Routing Information Base (RIB)
and the central Forwarding Information Base (FIB)(2a

and 2b), based on the shortest path computation.
3) Distribution of central FIB towards the line cards’ local

FIB (LFIB) (3).
The recomputation of the shortest path tree is usually

optimized to be recalculated in its entirety and takes about
30 to 50 µs per destination prefix. Optimizations can be done
using incremental SPF (iSPF) calculation schemes (see [4]
and [5]). The second step consists of updating the central
RIB and FIB, using the calculated shortest paths. This uses
about 50 to 100 µs per destination prefix (see also [1]).
Typically this step happens in (pseudo-)parallel with step 3,
which is about distributing the central FIB entries towards the
line cards’ LFIB. Running step 2 and 3 in (pseudo-)parallel,
means that they both use the central CPU in interleaved
timeslots, swapping between both processes for updating and
distribution. This process can be compared to the usual process
scheduling in time-sharing OSes such as Linux (commercial
routers make use of a hard real time OS). The consecutive
time the central CPU is spending to a task of central RIB/FIB
updating or linecard distribution is determined by the used
quantum of the swapping process. The quantum time in can
typically be configured between 10 and 800 ms (for Linux,
see [6]). Values in conformance with these were found in [1].

In practice the update process consists of a series of update-
distribution batches, where in a first quantum a fixed set of
prefixes are updated towards the central RIB/FIB, followed
by a quantum where the same set of prefixes is distributed
towards the LFIBs. By default, the cardinality of the set (the
number of prefixes that are updated or distributed during a
batch) is fixed during the update process. This is shown in
figure 2, and will be further quantified in the next section.

B. Formalized model of the router update process

The process described in the previous section can be for-
malized using the following naming conventions and modeling
assumptions (see figure 1):

• The set of affected1 traffic flows2: Fn = {f1, ..., fn} (for
example in MB/s).

• The ordered associated traffic flow rate bw(fi) : Fn → R
of the affected flows (assumed to be in MB/s).

• The update time tu: the time needed to update one prefix
in the central RIB/FIB.

• The distribution time td: the time needed to distribute a
prefix from the central FIB towards the linecards.

• The number xu of prefixes that are updated/distributed
in one batch

• The update quantum resulting from updating xu prefixes
is the time tqu = xu.tu.

• The distribution quantum resulting from distributing xu

prefixes from the central RIB/FIB towards the line cards
is the time tqd = xu.td.

• The swapping time/cost ts between interleaved quantums.

1Flows are ’affected’ if their routing is influenced by the received LS Update
2A traffic flow is a function f : V ×V → R which attaches a load to every

edge of the network. The function is constrained by a capacity constraint, a
flow symmetry constraint and a flow conservation constraint. (see [7]).
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The introduced terminology can be illlustrated by the fol-
lowing example. Let’s assume that a network failure results
into 5000 traffic flows that need to be recovered (F5000).
If we use the following configuration values tu = 100 µs,
td = 90 µs, xu = 500, ts = 1000 µs, this results into 10
update-distribution batches, each taking 500 × 100 + 1000 +
500 × 90 = 101000 µs. Taking into account the additional
intermediate swapping times between the batches, this results
into 10 × 101000 + 9 × 1000 = 1019000 µs, or 1.019 s to
recover all flows.

C. Recovery time and recovered traffic

The recovery of a set of traffic flows (i.e. traffic directed
towards a set of destination prefixes comprised as part of
different RIB/FIB entries to be updated) is completed when
the last corresponding RIB/FIB entry has been updated and
distributed from the central RIB/FIB to the linecard. The
corresponding point in time where the entire set of affected
traffic flows is recovered, is referred to as the total recovery
time. A single traffic flow can be considered as recovered, once
its corresponding RIB/FIB entry has been both updated and
distributed from the central RIB/FIB to the linecards.

The recovery time for a single traffic flow, given a constant
xu value, is thus dependent on the update-and-distribution
batch bi comprised in it. Only when the corresponding batch
(and all previous batches) are completed, the flow has been
recovered. Given n flows and the fact that only xu flows can
be updated in one batch, the batch number bi is determined
by bi = di/xue.

A traffic flow is recovered after all previous batches have
been updated and distributed, having a swapping overhead on
every load of a process. This results into the formula for the
recovery time of flow fi.

r(fi) = bi.(xu(tq + td) + 2ts)− ts

Applying the formula on the earlier example, we find that
f1 to f500 are recovered after 101 ms, while the recovery time
of f4501 to f5000, as well as the total recovery time is 1.019
s.

D. Packet loss

As long as an affected traffic flow hasn’t been recovered
upon a failure, packet loss occurs. The loss is proportional to
the throughput of the traffic flow during the even of the update.
This means that the total packet loss during the switchover
operation of all traffic flows is proportional to the product of
the recovery time and their corresponding average flow rate

during the router update process3. In other terms, the drop in
average capacity consumed by each outgoing flow (i.e. average
bandwidth consumption), can be equated to losses:

loss(Fn) =
n∑

i=1

r(fi).bw(fi)

For a small example on F4 with bw(f1) = 5, bw(f2) =
2, bw(f3) = 4, bw(f4) = 1 (in MB/s), and tu = 100 µs,
td = 90 µs, xu = 2, ts = 70 µs, this results into a packet loss
of 260× 10 + 590× 5 = 5550 KB/s.

The above formula illustrates that the order in which traffic
flows are updated, can be of uttermost importance for min-
imizing the associated packet loss of the update operation.
Randomly updating RIB/FIB entries, as is usually the case,
can result into the situation where higher bit rate flows need
to wait on others before they are updated, resulting in high
cumulative loss (for example f3 is proportionally bigger than
f2, but however needs to wait until f1 . . . f2 are updated).

III. OPTIMIZATION STRATEGIES

Given the formalized entities of previous sections, our goal
is to optimize the central RIB/FIB to LFIB update process in
such a way that the packet loss is minimized using a reactive
strategy. This means that from the moment a network topology
change is detected because of an incoming LS PDU, specific
actions are taken to minimize the packet loss. The strategies
we will suggest, account for available capacity on recovery
link(s) even if this does not allow to infer whether next-hops
are themselves able to cope with capacity increase on their
outgoing links (towards next next-hop).

A. Traffic flow monitoring

As motivated previously, gathering traffic flow average rate
statistics can be of high value during the event of router
updates. The following methods exist to gather data such as
to estimate bw(fi) on the moment of the update:

• Online statistical counters measure aspects of transitting
traffic in a router using counters, for example the number
of packets per destination prefix or used packet size
distribution curves (for example see [8]).

• Traffic sampling by means of samplers. Instead of count-
ing certain traffic characteristics, unmodified traffic is
captured for some time interval. This sample is then
used to derive certain characteristics, for example done
in Netflow-alike settings (e.g. ([9]).

As we will not focus on the metrology problem, we refer
to given citations for more detailed information. However
we assume the following running conditions. We assume the
monitoring system to be passive in the sense that no addtional
traffic is inserted into the network for the sake of monitoring.
We expect the monitoring system to be independent and

3This assumes that we exactly know the average bandwidth used during the
router update. In practice the bandwidth is an approximation using monitoring
techniques, as discussed in III-A. At the same time this approximation is the
estimation of the needed (available) capacity on the alternate set of one or
more link(s) towards the destination.



distributed, meaning that we do not assume any form of
centralized monitoring entity. Next, it is our assumption that
the monitoring system is based on an open loop, meaning that
the counts or estimations do not lead to actions modifying
the corresponding values. Last, but not least, for the current
study we depend on the assumption of temporal locality or
persistence, as we assume that the traffic pattern as measured
during a monitoring time frame will likely be the same as
during the time frame of the router update, given that the
distance between the two time frames is not too large. This
is related to the concept of Longe-range Dependency (LRD).
Further information can be found in [10].

B. Traffic flow sorting

Once average rate data about the traffic flows is known,
the most obvious way of using this information is to sort Fn

in descending order of average flow rate. The resulting set
On = {o1, ..., on} can now be defined as follows:

∀oi : ∃j ∈ {1, . . . , n} : oi = fj

i > j ⇒ bw(oi) ≥ bw(oj)

Upon the RIB information update, the corresponding loss
can thus be deduced and used as a means to minimize average
traffic losses during the central RIB/FIB to LFIB update
process. It is now easy to see or to prove that loss(On) ≤
loss(Fn). Though the gain of this is obvious, the computa-
tional cost of sorting can be a blocking issue as the router
update process needs to happen in a timeframe of hundreds
of ms (the typical average fastest computational complexity
is O(n log n)). However two additional observations can be
made for this: at first, average flow rate sorting per destination
prefix can happen in prior to the update itself (as continuous
process during traffic monitoring), second, perfect sorting is
not necesarrily needed because the most important gain is
reached when the most important traffic flows are put in the
beginning of the update batch.

C. Optimizing the number of prefixes in a quantum

The previous sections (i.e. II-C and II-D) made clear that the
effect of a fixed xu (and related quantums) during the router
update process can lead to a higher impact than expected. The
xu acts as a sort of a bin packer for the updates/distributions
to be executed. Using a given Fn (being sorted or not),
this section evaluates the possible gain of allowing xu to
be dynamically determined per update-distribution batch and
optimized depending on the specific character of Fn.

The goal of this configuration strategy is to minimize the
function loss(Fn) by finding the appropriate sequence of sets
of prefixes. Instead of a single fixed xu this results into a
sequence Xu = (xu1 , xu2 , . . . , xul

)4 of the number of prefixes
to be updated during every adjustable quantum. Associated to
these sequence is the sequence of update-distribution batches
Bu = (batchu1, . . . , batchul). This means that every fi is
contained in an update-distribution batch of Bu. Unfortunately

4Xu is actually an integer partition of n. This means that
∑l

i=1
xui = n.
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the smaller the xui ’s are chosen, the more swapping time is
sneaking into the total recovery time (see section II-C) of
the router update, possibly resulting into additional loss. We
have thus to consider an adaptive xu setting that minimizes
the packet loss by keeping the total recovery time as small
as possible (update-distribution batches should be as large as
possible to reduce swapping time). However, one should also
avoid that the recovery of certain traffic flows is delayed longer
than needed, because the longer the update-distribution batches
are, the longer prefixes need to wait until their update is both
updated and distributed, and thus recovered.

The associated recovery time of a flow fi is again deter-
mined by the batchk to which fi is attached. However, con-
trary to the definition in II-C, the length of update-distribution
batches is not fixed anymore. Therefore, one needs to find first
in which batch a flow fi is contained:

batch(fi)=batchj

m
j∑

r=1

xur ≥ i∧∀(s with
s∑

r=1

xur ≥ i) : s ≥ j

The recovery time of the update-distribution batch related
to prefix bin xuk is given by the following formula (see figure
3).

r(batchk) = (tu + td)
k∑

j=1

(xuk) + (2k − 1)ts

1) Base scenario: Finding an optimal sequence of xu’s
in realtime with limited global Fn information available is
not an easy task. To obtian a basic understanding of this
process, we first focus on the most simple case, the general
case of F2 = {f1, f2}. For choosing the appropriate xu, we
have now two options: xu = 1 or xu = 2. For this case,
we can simply choose the batch size which results into the
smallest loss as determined by the following decision function
d(F2) = lossxq=1(F2) − lossxq=2(F2). If d(F2) < 0, we
choose xu = 1, else we choose xu = 2. Let’s now write out
the function d(F2):

d(F2)=(tu + td + ts)bw(f1)
+(2tu + 2td + 3ts)bw(f2)
−(2tu + 2td + ts)(bw(f1) + bw(f2))

=2tsbw(f2)− (tu + td)bw(f1)

The above formula illustrates that the loss of the additional
swapping times of xu = 1 having an effect on the second flow



needs to be compared to the additional loss of the first flow
needing to wait on the second, for xq = 2. We can interprete
as follows: if the second flow is big enough compared to the
first flow (i.e. bw(f2) > tu+td

2ts
bw(f1), the base criterium),

extending the current batch is valuable.
2) Extended scenario: Unfortunately a strategy to compare

the loss of all possible choices for an arbitrary Fn cannot be
easily found. Nevertheless, following the interpretation of the
base scenario, we can observe that in the middle of the ordered
process of updating Fn, with our current batch containing a
set of flows to be updated bcurrent = (fi, . . . , fi+s)5, we have
two options:

1) Extend the current batch with the next flow fi+s+1

(extension)
2) Finish the current batch and put the next flow into a new

update-distribution batch (splitting)
In the base scenario we compared the loss of letting f1 wait

on f2, versus the loss caused by addtional swapping times
on f2. Similarly, we can again compare the additional cost
of extension vs. the additional cost of finishing the update-
distribution batch to guide us into the decision above.

The extension cost ecis can be formulated as follows:

ecis=(tu + td)bw(fi+s) + . . .+ (s+ 1)(tu + td)bw(fi)

=(tu + td)
i+s∑
t=i

(i+ s− t+ 1)bw(ft)

The formula above expresses the fact that, by extending
the current batch, the recovery time of every flow in the
current batch will result into an additional delay compared
to the minimal delay it can experience (compared to the
earliest recovery time6). That additional delay when multiplied
with the associated bandwidth allows to deduce the additional
loss caused by the update-distribution batch extension. For
example, the recovery of the first flow fi in the given batch was
already delayed with s update-distribute batches (as it was not
directly distributed but put in the same batch of s next flows),
and by adding an additional element (extending the batch), this
operation will delay it with an additional update-distribution
batch. On the contrary, the recovery of the last flow of the
current batch will only be delayed with one update-distribution
batch in case of extending the current batch.

Finishing the current batch on the other hand, also has an
associated cost, as it will introduce additional delay for the
coming flows, resulting from the additional swapping cost.
This termination condition can be formulated as follows:

fini+s = 2ts
n∑

t=i+s+1

bw(fi+s+1)

Our configuration strategy now consists in identifying the
action with the least associated cost. The actions being:

5Flows prior to fi have already been updated in an ordered manner (f1 to
fn)

6The earliest recovery time for a flow is when it is the last flow in an
update quantum having no earlier update quantums.

extending the current batch if ecis < fini+s, or finishing
the current batch in the other case. This action scheme can be
applied recursively until the update of Fn is finished.

3) Example: The optimization strategy for Fn with n > 2
can for example be applied on F4. Let’s assume our current
update batch contains f1, f2 and f3. Following the above
optimization strategy, this means that extension for f2 and
f3 had lower cost than splitting, i.e. ec11 < fin2 and
ec12 < fin3.

We can now either again extend the batch with f4 or split the
batch and put f4 in a new update-distribution batch. Figure 4
shows the difference between both decisions: extension delays
the recovery time for f1, f2 and f3, while a split delays the
recovery time for f4 (and all flows following f4). Table I
quantitatively shows the recovery times for all flows in both
scenario’s and compares them with the earliest recovery time
possible per flow . The decision ec13 < fin4 will compare
the difference in recovery time multiplied with the associated
bandwidth to compare packet loss of both options.

IV. EXPERIMENTAL RESULTS

The goal of this section is to evaluate the different router
update process models that were described in the previous
sections. For this a simulation environment is used. The
section is structured as follows: first the environment and
the methodology will be described, second a set of three
experiments is discussed.

A. Environment and methodology

Because no existing simulation environment was available
for evaluating the local router update process, a custom C++
framework was developed in which classes were made for
generating different sets of Fn, and for simulating the router
update process and its traffic-driven optimizations as modeled.

Simulations were executed on 5000 traffic flows (F5000).
Each traffic flow in the generated F5000-set was linked to a
traffic rate between 1 KB/s and 100 MB/s (bw(fi)), generated
using a bounded pareto distribution. To obtain representative
results, all experiments were repeated 100 times, and the
resulting values were averaged. The following parameters were
fixed: tu = 100 µs, td = 100 µs.

B. Results

1) Packet loss vs. (minimum) batch size: As there is little
known on the ”ideal update-distribution batch size”, the goal of
the first experiment is to evaluate the packet loss of the router
update process over different sizes of the update-distribution
batch (xu is varied in the X-axis between 0 and 5000). As
described earlier, the batch size determines the number of
prefixes that are updated towards the central RIB/FIB (during
the update quantum) and subsequently are distributed towards
the line cards (during the subsequent distribution quantum).
This exercise was done using 4 variants of the router update
process, using a value of 5 ms for the swapping time ts:

1) The default update process with fixed batch sizes (see
section II-C), using unsorted Fn data
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f1 tu + td + ts
3tu + 3td + ts

2(tu + td)

4tu + 4td + ts

3(tu + td)
f2 2(tu + td) + ts (tu + td) 2(tu + td)
f3 3(tu + td) + ts 0 (tu + td)
f4 4(tu + td) + ts 4tu + 4td + 3ts 2ts 0

TABLE I
RECOVERY TIME COMPARISON OF F4-SCENARIO: SPLIT VS. EXTENSION

2) The default update process with fixed batch sizes, using
sorted Fn data (traffic flows fi are sorted in descending
order of associated traffic rate, see section III-B)

3) The optimized update process with variable minimal
batch sizes (xui ≥X-axis-value), using the update strat-
egy as defined in III-C on unsorted Fn data

4) The optimized update process with variable minimal
batch sizes (xui ≥X-axis-value), using the update strat-
egy as defined in III-C on sorted Fn data

The resulting figure 5a shows that the total packet loss
increases almost linearly with respect to an increasing update-
distribution batch size. This phenomenon can be observed for
all applied variants. In addition, the experiment illustrates that
there is a significant packet loss difference between variants
using sorted Fn sets versus variants using unsorted Fn sets.
This confirms intuition, given the observations in section III-B.
The difference however becomes smaller for increased batch
sizes. This can be understood because the value of sorting
becomes lower if large batches of traffic flows are updated
and distributed at the same time.

Another important aspect following from this experiment
is that, the bigger the (minimal) batch size becomes, the
less flexibility it leaves for adaptation, and as a consequence,
the lesser gain can be achieved from dynamically optimizing
the length of the quantum. This must be understood in two
ways: at first, if there is no constraint on the batch size
regarding minimum size, which should be the case, it is clear
that packet loss of the optimization strategies is considerably
lower compared to the alternatives. At the other hand if there
is a constraint on the minimal batch size (represented by
the variation in the X-axis), two factors are influencing the
possible gain of the optimization strategies: the swapping time

and the available room for optimization. The first follows
from the fact that, the larger the batch becomes, the lower
the weight of the swapping time becomes. When this weight
becomes too low, it does not matter anymore if the update-
distribution batches are extended or splitted during the update
process because the trade-off resulting from the swapping
time (see section III-C2) becomes very one-sided. This is
validated in experiment IV-B2. The second factor is related
to the partitioning possibilities that are left, given a minimal
batch size. It is clear that using a batch size of 2500 traffic
flows or larger, forces the update process to split the updates
either into one batch containing all flows, or two batches of
size 2500 + delta.

The decrease in packet loss that can be achieved using
optimized variants of the router update process within the
range of lowest batch size constraints (i.e. xu ∈ [0, 60]), can
be validated in 5b. The figure underlines the possible gain
of sorting and of optimizing. A striking detail is that using
the optimization strategy as described in III-C2 can achieve
the same gain (packet loss decrease) as sorting the Fn-set
for the smaller batch sizes. The figure illustrates that the best
performance can be achieved using a sorted Fn-set, with small
batch sizes, optimized using the formulated strategy.

Optimizing the batch size using sorted Fn-sets leads to
the best resuls. At best, this can result into a decrease of
packet loss between 80 and 100 percent in the case the
constraints on minimum batch size are low, leading to a major
improvement compared to the situation where the batch size
is fixed arbitrarily.

2) Packet loss vs. swapping time interval: The goal of the
second experiment, is to evaluate the influence of the swapping
time on the formulated variants of the router update process.



Therefore, a new experiment was set up, using a relatively
large fixed value for the batch size (xu = 500), while the
swapping time interval was varied (X-axis) from 0 to 20000
µs (from 0 up to about the half of the update quantum).

The corresponding figure 5c shows linear increase in total
packet loss for increasing swapping times for all router update
variants. Clearly, strategies working on unsorted Fn sets suffer
significantly more from increased swapping times compared
to strategies using sorted Fn’s. Figure 5d shows the gains in
terms of percentage. In fact, sorting Fn results into an almost
constant gain (between 60 and 80 percent) in terms of packet
loss decrease, no matter the used swapping time interval.

As shortly mentioned in the previous experiment, the ratio
of the swapping time interval (ts) over the batch size (xu) has
an influence on the gain that can be achieved from optimization
strategies. The figure depicts that a decrease in loss using
optimization strategies can only be achieved from the moment
the swapping time becomes larger than 5 ms (a tenth of the
update quantum). In fact this gain can only be observed on
the figure using unsorted Fn-sets. This is a result of the low
splitting/update cost (fini+s). Having a low splitting/update
cost will result into small update-distribution batches (i.e. as
small as the minimal xu = 500). Therefore the resulting packet
loss will only decrease from the moment the swapping time,
and thus the ratio of it over xu becomes bigger.

3) Recovery time vs. (minimum) quantum time interval:
The optimization strategies from section III-C influence the
recovery time of different traffic flows, trying to shorten
recovery times for high bit rate flows. However, in general,
smaller packet loss does not necessarily mean that the total
recovery time is decreased. After all, the total recovery time is
increased by using smaller batch sizes, because more process
swapping is involved7. Therefore figure 5e shows the effect
on the total recovery time of the different variants versus the
(minimal) batch size used8. As can be expected, the biggest
differences in the graph can be observed for smaller batch sizes
(because optimization mostly makes sense for these). As soon
as a batch size of 50 ms or bigger is used, the recovery time for
all variants becomes the same, and follows an increasing curve,
fluctuating in steps. The fluctuation follows from the fact that
the resulting Fn-set is divised into the minimum number of
update-distribution batches of the given size dictated by the
X-axis. This means that if the router update process is split
into two batches of 4000 prefixes, that all flows only have
recovered after the second batch which is only sparsely filled
(1000 remaining prefixes).

Figure 5f shows the effect of increasing the swapping
time interval (ts) with respect to the total recovery time.
An almost linear increase can be observed for all strategies.
However, using the optimizing strategy from section III-C2 on
a sorted Fn-set leads to a lower ratio of increase, compared to
optimizing on an unsorted one. For the latter, the recovery time
only starts to decrease (compared to a fixed batch strategy)

7given a suffiently large swapping time, see previous experiment
8Because sorting Fn has no influence on the recovery time for the

unoptimized strategies, only one graph is shown for vaiant 1 and 2.

from the moment the swapping time becomes big enough (i.e.
15 ms, or 30 precent of the update quantum).

V. FUTURE WORK

Work in this paper can be extended such as to include
not only the associated bandwidth rate of traffic flows but
also their properties (e.g. elasticity, variability, (non-)real-time,
etc.). Control traffic flows (e.g. DNS, ARP, etc.)) belong to the
latter category and do not directly have a large influence on the
packet loss during the router update process, as their associated
rates are rather low. However, they do have an influence on
future traffic, meaning that if control traffic is lost during
the switchover, that packet loss can be significantly higher
in future instances. Future research can focus on intelligent
techniques to predict the value of this type of traffic and to
accomodate the router update process accordingly. Systematic
techniques for on-line classification of RIB/FIB updates per
update-distribution batch (classifier of traffic rate per destina-
tion prefix) will also be further investigated.

VI. CONCLUSION

This paper modeled the router update process to improve
its quality in terms of packet loss. Traffic flow statistics (i.e.
traffic flow rate data) where taken into account to obtain this
objective. Traffic-driven router update models were evaluated
using strategies with either fixed or optimized variable sizes
for the update-distribution batches. The resulting models were
implemented in a simulation environment and were quantita-
tively characterized. Depending on the context, we showed that
the formulated strategies can result into a significant decrease
in packet loss of the router update process.
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Fig. 5. Simulation results


