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Abstract—In this paper we apply the Gittins optimality result
to characterize the optimal scheduling discipline in a multi-class
M/G/1 queue. We apply the general result to several cases of
practical interest where the service time distributions belong to
the set of decreasing hazard rate distributions, like Pareto or
hyper-exponential. When there is only one class it is known
that in this case the Least Attained Service policy is optimal.
We show that in the multi-class case the optimal policy is a
priority discipline, where jobs of the various classes depending
on their attained service are classified into several priority levels.
Using a tagged-job approach we obtain, for every class, the mean
conditional sojourn time. This allows us to compare numerically
the mean sojourn time in the system between the Gittins optimal
and popular policies like Processor Sharing, First Come First
Serve and Least Attained Service (LAS). We implement the
Gittins’ optimal algorithm in NS-2 and we perform numerical
experiments to evaluate the achievable performance gain. We
find that the Gittins policy can outperform by nearly 10% the
LAS policy.

I. I NTRODUCTION

We are interested to schedule the jobs in theM/G/1 queue
with the aim to minimize the mean sojourn time in the system
as well as the mean number of jobs in the system. In our
study we restrict ourselves to the non-anticipating scheduling
policies. Let us recall that the policy is non-anticipatingif it
does not use information about the size of the arriving jobs.
In [1] Gittins considered anM/G/1 queue and proved that
the so-called Gittins index rule minimizes the mean delay. At
every moment of time the Gittins rule calculates, dependingon
the service times of jobs, which job should be served. Gittins
derived this result as a byproduct of his groundbreaking results
on the multi-armed bandit problem. The literature on multi-
armed bandit related papers that build on Gittins’ result ishuge
(see for example [2], [3], [4], [5], [6], [7], [8]). However,the
optimality result of the Gittins index in the context of the
M/G/1 queue has not been fully exploited, and it has not
received the attention it deserves.

In the present work we generalize the Gittins index approach
to the scheduling of the multi-classM/G/1 queue. We empha-
size that Gittins’ optimality in a multi-class queue holds under
much more general conditions than the condition required for
the optimality of the well-knowncµ-rule. We recall that the
cµ-rule is the discipline that gives strict priority in descending
order ofckµk, whereck andµk refer to a cost and the inverse
of the mean service requirement, respectively, of classk.

Indeed it is known (see for example [9], [10], [11]) that the
cµ-rule minimizes the weighted mean number of customers
in the queue in two main settings: (i) generally distributed
service requirements among all non-preemptive disciplines
and (ii) exponentially distributed service requirements among
all preemptive non-anticipating disciplines. In the preemptive
case thecµ-rule is only optimal if the service times are
exponentially distributed. On the other hand, by applying Git-
tins’ framework to the multi-class queue one can characterize
the optimal policy for arbitrary service time distributions.
We believe that our results open an interesting avenue for
further research. For instance well-known optimality results in
a single-class queue like the optimality of the Least Attained
Service (LAS) discipline when the service times are of type
decreasing hazard rate or the optimality of FCFS when the
service time distribution is of type New-Better-than-Used-in-
Expectation can all be derived as corollaries of Gittins’ result.
The optimality of thecµ-rule can also easily be derived from
the Gittins’ result.

In order to get insights into the structure of the optimal
policy in the multi-class case we consider several relevant
cases where the service time distributions are Pareto or hyper-
exponential. We have used these distributions due to the
evidence that the file size distributions in the Internet are
well presented by the heavy-tailed distributions such as Pareto
distributions with the infinite second moment. Also it was
shown that the job sizes in the Internet are well modelled
with the distributions with the decreasing hazard rate (DHR).
We refer to [12], [13], [14] for more details on this area.
In particular, we study the optimal multi-class scheduling
in the following cases of the service time distributions: two
Pareto distributions, several Pareto distributions, one hyper-
exponential and one exponential distributions. Using a tagged-
job approach and the collective marks method we obtain, for
every class, the mean conditional sojourn time. This allowsus
to compare numerically the mean sojourn time in the system
between the Gittins optimal and popular policies like Processor
Sharing (PS), First Come First Serve (FCFS) and LAS. We
find that in a particular example with two classes and Pareto-
type service time distribution the Gittins’ policy outperforms
LAS by nearly 25% under moderate load.

From an application point of view, our findings could be
applied in Internet routers. Imagine that incoming packets



are classified based on the application or the source that
generated them. Then it is reasonable to expect that the service
time distributions of the various classes may differ from each
other. A router in the Internet does not typically have access
to the exact required service time (in packets) of the TCP
connections, but it may have access to the attained service of
each connection. Thus we can apply our theoretical findings
in order to obtain the optimal (from the connection-level
performance point of view) scheduler at the packet level. We
implement the Gittins’ scheduling in the NS-2 simulator and
perform experiments to evaluate the achievable performance
gain. We found that in particular examples the Gittins policy
can outperform the LAS policy by nearly10%.

The structure of the paper is as follows: In Section 2 we
review the Gittins index policy for the single-classM/G/1
queue and then provide a general framework of the Gittins
index policy for the multi-classM/G/1 queue. In Section 3,
we study the Gittins index policy for the case of two Pareto
distributed classes and we generalized the results to multiple
Pareto classes. In Section 4 we study the case of exponen-
tial and hyper-exponential distributions, we obtain analytical
results and provide numerical examples. Section 5 concludes
the paper.

II. G ITTINS POLICY IN MULTI -CLASSM/G/1 QUEUE

Let us first recall the basic results related to the Gittins index
policy in the context of a single-classM/G/1 queue.

Let Π denote the set of non-anticipating scheduling policies.
Popular disciplines such as PS, FCFS and LAS, also called FB,
belong toΠ. Important disciplines that do not belong toΠ are
SRPT and Shortest Processing Time (SPT).

We consider a single-classM/G/1 queue. LetX denote
the service time with distributionP (X ≤ x) = F (x). The
density is denoted byf(x), the complementary distribution
by F (x) = 1 − F (x) and the hazard rate function byh(x) =
f(x)/F (x). Let T

π
(x), π ∈ Π denote the mean conditional

sojourn time for the job of sizex in the system under the
scheduling policyπ, andT

π
, π ∈ Π denote the mean sojourn

time in the system under the scheduling policyπ.
Let us give some definitions.
Definition 1: For anya, ∆ ≥ 0, let

J(a, ∆) =

∫ ∆

0
f(a + t)dt

∫ ∆

0
F (a + t)dt

=
F (a) − F (a + ∆)

∫ ∆

0
F (a + t)dt

. (1)

For a job that has attained servicea and is assigned∆ units
of service, equation (1) can be interpreted as the ratio between
(i) the probability that the job will complete with a quota of
∆ (interpreted as payoff) and (ii) the expected processor time
that a job with attained servicea and service quota∆ will
require from the server (interpreted as investment). Note that
for everya > 0

J(a, 0) =
f(a)

F (a)
= h(a),

J(a,∞) =
F (a)

∫ ∞

0 F (a + t) dt
= 1/E[X − a|X > a].

Note further thatJ(a, ∆) is continuous with respect to∆.
Definition 2: The Gittins index function is defined by

G(a) = sup
∆≥0

J(a, ∆), (2)

for any a ≥ 0.
We call G(a) the Gittins indexafter the author of book [1],
which handles various static and dynamic scheduling prob-
lems. Independently, Sevcik defined a corresponding index
when considering scheduling problems without arrivals in [15].
In addition, this index has been dealt with by Yashkov, see [16]
and references therein, in particular the works by Klimov [17],
[18].

Definition 3: For anya ≥ 0, let

∆∗(a) = sup{∆ ≥ 0 | J(a, ∆) = G(a)}. (3)

By definition,G(a) = J(a, ∆∗(a)) for all a.
Definition 4: The Gittins index policyπg is the scheduling

discipline that at every instant of time gives service to thejob
in the system with highestG(a), wherea is the job’s attained
service.

Theorem 1:The Gittins index policy minimizes the mean
sojourn time in the system between all non-anticipating
scheduling policies. Otherwise, in theM/G/1 queue for any
π ∈ Π,

T
πg

≤ T
π
.

Proof: See [1].
Note that by Little’s law the Gittins index policy also

minimizes the mean number of jobs in the system.
We generalize the result of Theorem 1 to the case of

the multi-class single server queue. Let us consider a multi-
class M/G/1 queue. LetXi denote the service time with
distributionP (Xi ≤ x) = Fi(x) for every classi = 1, . . . , N .
The density is denoted byfi(x) and the complementary
distribution byF i(x) = 1−Fi(x). Jobs of every class-i arrive
with the Poisson process with rateλi, the total arrival rate
is λ =

∑N
i=1 λi. For every classi = 1, . . . , N we define

Ji(a, ∆) =
∫ ∆
0

fi(a+t)dt
∫

∆
0

F i(a+t)dt
and then the Gittins index of a class-

i job is defined asGi(a) = sup∆≥0 Ji(a, ∆).
The mean conditional sojourn timeT

π

i (x) for the class-i
job of sizex, i = 1, . . . , N , and the mean sojourn timeT

π
in

the system under the scheduling policyπ ∈ Π are defined as
in the previous section.

Proposition 1: In a multi-classM/G/1 queue the policy
that schedules the job with highest Gittins indexGi(a), i =
1, . . . , N in the system, wherea is the job’s attained service,
is the optimal policy that minimizes the mean sojourn time.

Proof: The result follows directly from the application
Gittins Index Definition 2 and Theorem 1 to a multi-class
M/G/1 queue.

Let hi(x) = fi(x)/F i(x) denote the hazard rate function
of class i = 1, . . . , N . Let the service time distribution of
class-i have a decreasing hazard rate. It is possible to show,



see [19], that ifhi(x) is non-increasing, the functionJi(a, ∆)
is non-increasing in∆. Thus

Gi(a) = Ji(a, 0) = hi(a). (4)

As a consequence we obtain the following proposition.
Proposition 2: In a multi-classM/G/1 queue with non-

increasing hazard rates functionshi(x) for every classi =
1, . . . , N , the policy that schedules the job with highesthi(a),
i = 1, . . . , N in the system, wherea is the job’s attained
service, is the optimal policy that minimizes the mean sojourn
time.

Proof: Follows immediately from the Gittins policy Def-
inition 4, Proposition 1 and equation (4).

The policy presented in Proposition 2 is an optimal policy
for the multi-class single server queue between all non-
anticipating scheduling policies. Let us notice that for the
single class single server queue the Gittins policy becomes
a LAS policy, as the hazard rate function is the same for all
jobs and so the job with the maximal value of the hazard rate
function is the job with the least attained service. When we
serve jobs with the Gittins policy in the multi-class queue to
find a job which has to be served next, we need to calculate
the hazard rate of every job in the system. The job which has
the maximal value of the hazard rate function is served the
next.

Now let us consider several subcases of the described
general approach. Depending on the behavior of the hazard
rate functions of the job classes the policy is different. We
consider the case with two job classes in the system and
two subcases: (a) both job classes are distributed with Pareto
and the hazard rate function do not cross and (b) job size
distributions are hyper-exponential with one and two phases
and they cross at one point. Then we extend the case of two
Pareto job classes to the case ofN Pareto job classes.

III. T WO PARETO CLASSES

A. Model description

θ g(x) x x

h1(x)

h2(0)

h2(x)

Figure 1. Two Pareto classes, hazard
rates

Jobs

θ

class-1

class-2

high-priority queue

low-priority queue

class-1

class-2

LAS

Gittins
θ

Figure 2. Two Pareto classes, policy
scheme

We consider the case when the job size distribution func-
tions are Pareto. We consider the two-class single server
M/G/1 queue. Jobs of each class arrive to the server with
Poisson process with ratesλ1 andλ2. Job sizes are distributed

according to the Pareto distributions, namely

Fi(x) = 1 −
bci

i

(x + bi)ci
, i = 1, 2. (5)

Herebi = mi(ci−1), wheremi is the mean of class-i, i = 1, 2.
Thenfi(x) = bci

i ci/(x + bi)
ci+1, i = 1, 2 and the hazard rate

functions are

hi(x) =
ci

(x + bi)
, i = 1, 2.

This functions cross at the pointa∗∗ = c2b1−c1b2
c1−c2

. Without
loss of generality suppose thatc1 > c2. Then the behavior of
the hazard rate functions depends on the values ofb1 andb2.
Let us first consider the case when the hazard rate function
do not cross, soa∗∗ < 0. This happens whenb1/b2 < c1/c2.
Then the hazard-rate functions are decreasing and never cross
andh1(x) > h2(x), for all x ≥ 0.

Let us denoteθ and functiong(x) in the following way that

h1(x) = h2(g(x)), h1(θ) = h2(0).

We can see thatg(θ) = 0. For given expressions ofhi(x),
i = 1, 2 we get g(x) = c2

c1
(x + b1) − b2, θ = c1b2−c2b1

c2
.

According to the definition of functiong(x), the class-1 job
of sizex and the class-2 job of sizeg(x) have the same value
of the hazard rate when they are fully served, see Figure 1.
Then the optimal policy scheme is given on Figure 2.

B. Optimal policy

Jobs in the system are served in two queues, low and high
priority queues. The class-1 jobs which have attained service
a < θ are served in the high priority queue with LAS policy.
When the class-1 job achievesθ amount of service it is moved
to the second low priority queue. The class-2 jobs are moved
immediately to the low priority queue. The low priority queue
is served only when the high priority queue is empty. In the
low priority queue jobs are served in the following way: the
service is given to the job with the highesthi(a), wherea is the
job’s attained service. So, for every class-1 job with a attained
service the functionh1(a) is calculated, for every class-2 job
with a attained service the functionh2(a) is calculated. After
all values ofhi(a) are compared and the job which has the
highesthi(a) is served.

Now let us calculate the expressions of the mean conditional
sojourn time for the class-1 and class-2 jobs.

C. Mean conditional sojourn times

Let us denote by indices[](1) and[](2) the values for class-1
and class-2 accordingly.

Let us define asXn
y

(i)
the n-th moment andρ(i)

y be the
utilization factor for the distributionFi(x) truncated aty for
i = 1, 2. The distribution truncated aty equals toF (x) for
x ≤ y and equals to1 when x > y. Let us denoteWx,y the
mean workload in the system which consists only of class-1
jobs of size less thanx and of class-2 jobs of size less than
y. According to the Pollaczek-Khinchin formula

Wx,y =
λ1X2

x

(1)
+ λ2X2

y

(2)

2(1 − ρ
(1)
x − ρ

(2)
y )

.



Now let us formulate the following Theorem.
Theorem 2:In the two-classM/G/1 queue where the job

size distributions are Pareto, given by (5), and which is sched-
uled with the Gittins policy described in Subsection III-B,the
mean conditional sojourn times for class-1 and class-2 jobs
are

T1(x) =
x + Wx,0

1 − ρ
(1)
x

, x < θ, (6)

T1(x) =
x + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x ≥ θ, (7)

T2(g(x)) =
g(x) + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x ≥ θ. (8)

Proof: Let us give a very general idea of the proof. To
obtain expressions (7), (8) we use the fact that the second
low priority queue is the queue with batch arrivals. To obtain
expressions of the mean batch size with and without the
tagged job we apply the Generating function analysis using
the method of the collective marks.

The obtained expressions (6), (7) and (8) can be interpreted
using the tagged-job and mean value approach.

Let us consider class-1 jobs. The jobs of sizex ≤ θ are
served with the LAS policy, so the mean conditional sojourn
time is the known, see [20, Sec. 4.6],T1(x) =

x+Wx,0

1−ρ
(1)
x

, x < θ,

whereWx,0 is the mean workload andρ(1)
x is the mean load

in the system for class-1 job of sizex. The mean workload
Wx,0 and mean loadρ(1)

x consider only the jobs of the high
priority queue of class-1.

For the jobs of sizex > θ the expression (7) can be
presented in the following way,T1(x) = x + Wx,g(x) +

T1(x)(ρ
(1)
x + ρ

(2)
g(x)), where

• x is time which is actually spent to serve the job;
• Wx,g(x) is the mean workload which the tagged job finds

in the system and which has to be processed before it;
• T1(x)(ρ

(1)
x + ρ

(2)
g(x)) is the mean time to serve the jobs

which arrive to the system during the service time of the
tagged job and which have to be served before it.

Let us describe several properties of the optimal policy.

D. Properties of the optimal policy

Property 1: When the class-2 jobs arrive to the server
they are not served immediately, but wait until the high
priority queue is empty. The mean sojourn time is the limit
limg(x)→0 T2(g(x)). As limx→θ g(x) = 0, then

lim
g(x)→0

T2(g(x)) =
Wθ,0

1 − ρ
(1)
θ

=
λ1X2

θ

(1)

2(1 − ρ
(1)
θ )2

.

Let us notice that

lim
g(x)→0

T2(g(x)) 6= T1(θ) =
θ + Wθ,0

1 − ρ
(1)
θ

.

Class-2 jobs wait in the system to be served in the low priority
queue, the mean waiting time islimg(x)→0 T2(g(x)). Class-1

jobs of size more thenθ also wait in the system to be served
in the low priority queue, the mean waiting time for them is
T1(θ). Property 1 shows that these two mean waiting times
are not equal, so class-1 jobs and class-2 jobs wait different
times to start to be served in the low priority queue.

Property 2: Let us consider the condition of no new arrival.
According to the optimal policy structure in the low priority
queue jobs are served according to the LAS policy with
different rates, which depend on the number of jobs in each
class and hazard rate functions. For the case when there are
no new arrivals in the low priority queue we can calculate the
rates with which the class-1 jobs and class-2 jobs are served
in the system at every moment of time. We consider that all
the class-1 jobs and all the class-2 jobs already received the
same amount of service. Letn1 and n2 be the number of
jobs in class-1 and class-2 and letx1 andx2 be the attained
services of every job in these classes. Then at any moment
h1(x1) = h2(x2). If the total capacity of the server is∆, then
let ∆1 and∆2 be the capacities which each job of class-1 and
class-2 receives. Then

n1∆1 + n2∆2 = ∆.

Also h1(x1 + ∆1) = h2(x2 + ∆2). As ∆ is very small (and
so as well∆1 and∆2) according to the LAS policy, then we
can approximate

hi(x + ∆i) = hi(x) + ∆ih
′
i(x), i = 1, 2.

Then from the previous equations we have∆1h
′
1(x1) =

∆2h
′
2(x2). Then

∆1

∆
=

h′
2(x2)

n1h′
2(x2) + n2h′

1(x1)
,

∆2

∆
=

h′
1(x1)

n1h′
2(x2) + n2h′

1(x1)
.

This result is true for any two distributions for which the
hazard rates are decreasing and never cross. For the case of
two Pareto distributions given by (5) we have the following:

∆1

∆
=

c1

n1c1 + n2c2
,

∆2

∆
=

c2

n1c1 + n2c2
.

So, for the case of two Pareto distributions the service rates
of class-1 and class-2 jobs do not depend on the current jobs’
attained services.

Property 3: As one can see from the optimal policy descrip-
tion, the class-1 and class-2 jobs leave the system together if
they have the same values of the hazard rate functions of their
sizes and if they find each other in the system. According to
the definition of theg(x) function we can conclude that the
class-1 job of sizex and class-2 job of sizeg(x), if they find
each other in the system, leave the system together. But these
jobs do not have the same conditional mean sojourn time,

T1(x) 6= T2(g(x)).

This follows from expressions (7) and (8).



E. Two Pareto classes with intersecting hazard rate functions

Now let us consider the case when the hazard rate function
cross, thena∗∗ = (c2b1 − c1b2)/(c1 − c2) ≥ 0. As we
consideredc1 > c2, then h1(0) < h2(0) and then class-2
jobs are served in the high priority queue until they receive
θ∗ = (c2b1− c1b2)/c1 amount of service. Hereθ∗ is such that
h2(θ

∗) = h1(0) andg(θ∗) = 0. Theg(x) function crosses the
y = x function at pointa∗∗. As we show in Property 2, the
rates with which class-1 and class-2 jobs are served in the low
priority queue depend only on thec1 andc2 parameters and so
class-1 jobs always have priority over class-2 jobs according
to the service rates. We can rewrite the expressions of mean
conditional sojourn times of Section III, Theorem 2 in the
following way.

Corollary 1: In the two-classM/G/1 queue where the job
size distributions are Pareto, given by (5) such that the hazard
rate functions cross, and which is scheduled with the Gittins
optimal policy, the mean conditional sojourn times for class-1
and class-2 jobs are

T1(x) =
x + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x ≥ 0,

T2(x) =
x + Wx,0

1 − ρ
(2)
x

, x < θ∗,

T2(g(x)) =
g(x) + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x ≥ θ∗.

Proof: The proof follows from the previous discussion.

F. Numerical results
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Figure 3. Two Pareto classes, mean sojourn times with respect to the load
ρ, V1

We consider two classes with parameters presented in
Table I and we calculate the mean sojourn time in the system
numerically, using the expressions of the mean conditional
sojourn time (6), (7) and (8). We provide the results for two
different parameters sets, which we callV1 andV2.

It is known that in the Internet most of the traffic is
generated by the large files (80%), while most of the files
are very small (90%). This phenomenon is referred to as
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Figure 4. Two Pareto classes, mean sojourn times with respect to the load
ρ, V2

Table I
TWO PARETO CLASSES, PARAMETERS

V c1 c2 m1 m2 ρ1 ρ2 ρ
V1 25.0 2.12 0.04 0.89 0.1 0.4..0.85 0.5..0.95
V2 10.0 1.25 0.05 1.35 0.25 0.25..0.74 0.5..0.99

“mice-elephant” effect. Also it is known that the file sizes are
well presented by the heavy-tailed distributions like Pareto.
Here the class-1 jobs represent ”mice” class and class-2 jobs
”elephants”. We consider that the load of the small files is
fixed and find the mean sojourn time in the system according
to the different values of the ”elephant” class arrival rate.

We compare the mean sojourn time for the Gittins policy,
PS, FCFS and LAS policies. These policies can be applied ei-
ther in the Internet routers or in the Web service. The expected
sojourn times for these policies are, see [20],T

PS
= ρ/λ

1−ρ for

the PS policy,T
FCFS

= ρ/λ + W∞,∞ for the FCFS policy,
whereW∞,∞ means the total mean unfinished work in the
system. For the LAS policy

T
LAS

=
1

λ

∫ ∞

0

T
LAS

(x)f(x)dx,

T
LAS

(x) =
x + Wx,x

1 − ρ
(1)
x − ρ

(2)
x

,

wheref(x) = λ1f1(x) + λ2f2(x) andλ = λ1 + λ2.
The mean sojourn times for the parameters setsV1 andV2

are presented in Figures 3,4. For the results ofV2 we do not
plot the mean sojourn time for the FCFS policy as class-2
has an infinite second moment. As one can see Gittins policy
minimizes the mean sojourn time. In particular, it outperforms
the LAS policy by almost25−30% when the system is loaded
by around90%. We note that the PS policy produces much
worse results than the LAS and Gittins policies.

G. Simulation results

We implement Gittins policy algorithm for the case of two
Pareto distributed classes in NS-2 simulator. The algorithm
is implemented in the router queue. In the router we keep
the trace of the attained service (by attained service we mean
the number of transmitted packets) by every connection in



the system. We keep the trace during some time interval after
which there are no more packets from the connection in the
queue.

It is possible to select the packet with the minimal sequence
number of the connection which has to be served instead of
selecting the first packet in the queue. In the current simulation
this parameter does not play a big role according to the
selected model scheme and parameters. (There are no drops
in the system, so there are no retransmitted packets. Then all
the packets arrive in the same order as they were sent.)

The algorithm which is used for the simulations is as
follows:

Algorithm
on packet dequeue
select the flowf with the maxhi(af ), where

af is the flow’s attained service
select the first packetpf of the flow f in the queue
dequeue selected packetpf

setaf = af + 1

To compare Gittins policy with the LAS policy we also
implemented LAS algorithm in the router queue. According
to the LAS discipline the packet to dequeue is the packet from
the flow with the least attained service.

The simulation topology is the following: jobs arrive to
the bottleneck router in two classes, which represent mice
and elephants in the network. Jobs are generated by FTP
sources which are connected to TCP senders. The file size
distributions are Pareto,Fi = 1 − bci

i /(x + bi)
ci , i = 1, 2.

Jobs arrive according to the Poisson arrivals with ratesλ1 and
λ2. For the simulations we selected the scenario described in
Subsection III-E.

We consider that all connection have the same propagation
delays,12 ms. The bottleneck link capacity isµ =100 Mbit/s.
The simulation run time is2000 ms. We provide two different
versions of parameters selection, which we call Vs1 and Vs2.
In Vs1 first class takes25% of the total bottleneck capacity
and in Vs2 it takes50%.

The parameters we used are given in Table II.

Table II
TWO PARETO CLASSES, SIMULATION PARAMETERS

Ver. c1 c2 m1 m2 ρ1 ρ2 ρ
Vs1 10.0 1.25 0.5 6.8 0.25 0.50 0.75
Vs2 10.0 2.25 0.5 4.5 0.50 0.37 0.87

The results are given in Table III. We provide results for
the NS-2 simulations and the values of the numerical mean
sojourn times with the same parameters. We calculate the
related gain of the Gittins policy in comparison with DropTail
and LAS policies,g1 = T

DT
−T

Gitt

T
DT andg2 = T

LAS
−T

Gitt

T
LAS .

We found that with the NS-2 simulations the gain of the
Gittins policy in comparison with LAS policy is not so
significant when the small jobs do not take a big part of the
system load. As one can see in Vs2 when the class-1 load is
50% the related gain of the Gittins policy in comparison with

Table III
MEAN SOJOURN TIMES

Ver. T
DT

T
LAS

T
Gitt

g1 g2

Vs1 NS-2 18.72 2.10 2.08 88.89% 0.95%
Vs1 theory PS: 4.71 1.58 1.01 78.56% 36.08%
Vs2 NS-2 6.23 2.03 1.83 70.63% 9.85%
Vs2 theory PS: 6.46 3.25 2.19 66.10% 32.62%

LAS policy is 10%. In both versions the relative gain for the
corresponding analytical system is much higher and reaches
up to36%. We explain this results with the phenomena related
to the TCP working scheme.

H. Multiple Pareto classes

We consider a multi-class single serverM/G/1 queue. Jobs
arrive to the system inN classes. Jobs ofi-th class,i =
1, . . . , N arrive according to the Poisson arrival processes with
ratesλi. Jobs size distributions are Pareto, namelyFi(x) =
1 − 1

(x+1)ci
, i = 1, . . . , N . Then, the hazard rateshi(x) =

ci

(x+1) , i = 1, . . . , N , never cross. Without loss of generality,
let us consider thatc1 > c2 > . . . > cN . Let us define the
values ofθi,j andgi,j(x), i, j = 1, . . . , N in the following way
hi(θi,j) = hj(0), hi(x) = hj(gi,j(x)). Then we getgi,j(x) =
cj

ci
(x + 1), θi,j = ci

cj
− 1. Let us notice thatθk,i < θk,i+1

and θi,k > θi+1,k, k = 1, . . . , N , i = 1, . . . , N − 1, i 6= k,
i 6= k + 1. Then the optimal policy is the following.

I. Optimal policy

There areN queues in the system. The class-1 jobs arrive to
the system and go to the first-priority queue-1. There they are
served until they getθ1,2 of service. Then they are moved to
the queue-2, which is served only when the queue-1 is empty.
In the queue-2 the job of class-1 are served with the jobs of
class-2 with the Gittins policy. When the jobs of class-1 attain
serviceθ1,3 they are moved to the queue-3. When the jobs of
class-2 attain serviceθ2,3 they are also moved to the queue-3.
And so on.

J. Mean sojourn times

To find the expressions for the mean conditional sojourn
times in the system we use the analysis which we used in in-
terpretation of the mean conditional sojourn times expressions
in the case of two class system, see Section III.

Let the tagged job be from class-1 of sizex. The jobs which
have the same priority in the system and which have to be
served before the tagged job are: class-1 jobs of size less than
x, class-i jobs of size less thang1,i(x).

We denoteXn
x

(i)
the n-th moment andρ(i)

x the utilization
factor for the distributionFi(x) of the class-i, i = 1, . . . , N
truncated atx. The mean workload in the system which has to
be served before the tagged job is then found with Pollaczek-
Khinchin formula and equals to

Wx,g1,2(x),...,g1,N (x) =

∑N
i=1 λiX2

g1,i(x)

2(1 −
∑N

i=1 ρg1,i(x))
.

Then we formulate the theorem.



Theorem 3:For class-1 jobs of sizex such asθ1,p < x <
θ1,p+1, p = 1, . . . , N and corresponding class-k jobs with
sizesg1,k(x), k = 2, . . . , p the mean conditional sojourn times
are given by

T1(x) =
x + W (x, g1,2(x), . . . , g1,p(x))

1 − ρ1(x) − ρ2(g1,2(x)) − . . . − ρp(g1,p(x))
,

Tk(g1,k(x)) =
g1,k(x) + W (x, g1,2(x), . . . , g1,p(x))

1 − ρ1(x) − ρ2(g1,2(x)) − . . . − ρp(g1,p(x))
.

Here we consider thatθi,N+1 = ∞, i = 1, . . . , N .
Proof: Similar to the proof of Theorem 2.

IV. H YPER-EXPONENTIAL AND EXPONENTIAL CLASSES

µ1

h1

h2(x)

x

h2(x1)

h2(x2)

a∗x1 < a∗ x2 > a∗

Figure 5. Exponential and HE
classes, hazard rates.

Jobs

class-1

class-2

high-priority queue LAS

a
∗

a
∗

second-priority queue

third-priority queue

LAS

LAS

priority

Figure 6. Exponential and HE
classes, policy description.

We consider two classM/G/1 queue. Jobs of each class
arrive with the Poisson arrival process with ratesλ1 and λ2.
The job size distribution of class-1 is exponential with mean
1/µ1, and hyper-exponential (HE) with two phases for class-2
with the mean(µ3p + (1 − p)µ2)/(µ2µ3). Namely,

F1(x) = 1−e−µ1x, F2(x) = 1 −pe−µ2x−(1 − p)e−µ3x. (9)

The hazard rate function of class-1 is a constant and equals
to h1 = µ1. The hazard rate function of the class-2 h2(x) =
pµ2e−µ2x+(1−p)µ3e−µ3x

pe−µ2x+(1−p)e−µ3x , x ≥ 0. is decreasing inx. As both
hazard rate functions are non-increasing the optimal policy
which minimizes the mean sojourn time is Gittins policy based
on the value of the hazard function, which gives service to the
jobs with the maximal hazard rate of the attained service.

For the selected job size distributions the hazard rate
functions behave in different ways depending on parameters
µ1, µ2, µ3 and p. The possible behaviors of the hazard rate
functions determine the optimal policy in the system. If the
hazard rate functions never cross, the hazard rate of class-1
is higher than the hazard rate of class-2, then the class-1 jobs
are served with priority to class-2 jobs. This happens when
h1 > h2(x), x ∈ (0,∞). As h2(x) is decreasing, then this
happens whenµ1 > h2(0). Let us consider thatµ2 > µ3, then
ash2(0) = pµ2 +(1−p)µ3 andµ1 > h2(0) if µ1 > µ2 > µ3.
For this case it is known that the optimal policy is a strict
priority policy, which serves the class-1 jobs with the strict
priority with respect to the class-2 jobs. From our discussion
it follows that this policy is optimal even ifµ2 > µ1 > µ3,
but still µ1 > pµ2 + (1 − p)µ3.

Let us consider the case whenµ2 > µ1 > µ3 and µ1 <
pµ2+(1−p)µ3. Then it exists the unique point of intersection
of h2(x) andh1. Let us denotea∗ the point of this intersection.
The value ofa∗ is the solution ofh2(x) = µ1. Solving this
equation, we get that

a∗ =
1

µ2 − µ3
ln

(

p

1 − p

µ2 − µ1

µ1 − µ3

)

.

The hazard rate function scheme is given in Figure 5. Then,
the optimal policy is the following.

A. Optimal policy.

There are three queues in the system, which are served with
the strict priority between them. The second priority queueis
served only when the first priority queue is empty and the third
priority queue is served only when the first and second priority
queues are empty. The class-2 jobs arrive to the system are
served in the first priority queue with the LAS policy until
they geta∗ amount of service. After they geta∗ amount of
service they are moved to the third priority queue, where they
are served according to the LAS policy. The class-1 jobs arrive
to the system and go to the second priority queue, where they
are served with LAS policy. Sinceh1(x) = µ1, class-1 jobs
can be served with any non-anticipating scheduling policy.The
scheme of the optimal policy is given in Figure 6.

According to this optimal policy we find the expressions of
the expected sojourn times for the class-1 and class-2 jobs.

B. Expected sojourn times

Let us recall that the mean workload in the system for the
class-1 jobs of size less thanx and class-2 jobs of size less
than y is Wx,y and is given by (6). We prove the following
Theorem.

Theorem 4:The mean conditional sojourn times in the
M/G/1 queue with job size distribution given by (9) under
Gittins optimal policy described in Subsection IV-A are given
by

T1(x) =
x + Wx,a∗

1 − ρ
(1)
x − ρ

(2)
a∗

, x ∈ [0,∞], (10)

T2(x) =
x + W0,x

1 − ρ
(2)
x

, x ∈ [0, a∗], (11)

T2(x) =
x + W∞,x

1 − ρ
(1)
∞ − ρ

(2)
x

, y ∈ (a∗,∞). (12)

Proof: Similar to the proof of the Theorem 2. To find
expressions of the mean conditional sojourn times we use the
mean-value analysis and tagged job approach.

C. Pareto and exponential classes

We can apply the same analysis for the case when class-
1 job size distribution is exponential and class-2 job size
distribution is Pareto. Let us consider the case when the hazard
rate functions of class-1 and class-2 cross at one point.

Let F1(x) = 1 − e−µ1x and F2(x) = 1 − bc2
2 /(x + b2)

c2 .
Thenh1 = µ1 andh2(x) = c2/(x+b2). The crossing point is
a∗ = c2/µ1 − b2. Whena∗ ≤ 0 the hazard rate functions do



not cross and then the optimal policy is to give strict priority
to the class-1 jobs. If a∗ > 0 then the hazard rate functions
cross at one point and the optimal policy is the same as in the
previous section. Then the expressions of the mean conditional
sojourn timed of class-1 and class-2 are also (10), (11) and
(12).

V. CONCLUSIONS

In [1] Gittins considered anM/G/1 queue and proved that
the so-called Gittins index rule minimizes the mean delay.
The Gittins rule determines, depending on the service times
of jobs, which job should be served next. Gittins derived
this result as a by-product of his groundbreaking results on
the multi-armed bandit problem. Gittins’ results on the multi-
armed bandit problem have had a profound impact and it is
extremely highly cited. However, and in despite of the big
body of literature on scheduling disciplines in single server
queues, Gittins work in theM/G/1 context has not received
much attention.

In [19] authors showed that Gittins’ policy could be used
to characterize the optimal scheduling policy when the hazard
rate of the service time distribution is not monotone. In the
current work we have used Gittins’ policy to characterize
the optimal scheduling discipline in a multi-class queue.
Our results show that, even though all service times have a
decreasing hazard rate, the optimal policy can significantly
differ from LAS, which is known to be optimal in the single-
server case. We demonstrate that in particular cases PS has
much worse performance than Gittins policy.

Using NS-2 simulator we implemented the Gittins optimal
policy in the router queue and provided simulations for several
particular schemes. With the simulation results we found that
Gittins policy can achieve10% gain in comparison with LAS
policy and provides much better performance than DropTail
policy.

In future research we may consider other types of service
time distributions. The applicability of our results in real sys-
tems like the Internet should also be more carefully evaluated.
We also would like to investigate the conditions under which
Gittins policy gives significantly better performance thanLAS
policy.
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