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Abstract—In this paper we apply the Gittins optimality result ~ Indeed it is known (see for example [9], [10], [11]) that the
to characterize the optimal scheduling discipline in a muli-class cu-rule minimizes the weighted mean number of customers
M/G/1 queue. We apply the general result to several cases ofj, the queue in two main settings: (i) generally distributed

practical interest where the service time distributions béong to . . ¢ I tive discisli
the set of decreasing hazard rate distributions, like Pareg or S€VICE requirements among all non-preemptive discipline

hyper-exponential. When there is only one class it is known and (i) exponentially distributed service requirementsag
that in this case the Least Attained Service policy is optima all preemptive non-anticipating disciplines. In the predine
We show that in the multi-class case the optimal policy is a case thecu-rule is only optimal if the service times are
priority discipline, where jobs of the various classes depading exponentially distributed. On the other hand, by applyirig G

on their attained service are classified into several prioty levels. tins' f K to th lti-cl harageri
Using a tagged-job approach we obtain, for every class, the @an INS' framework 1o the mulli-Class queue one can charateer

conditional sojourn time. This allows us to compare numerially ~the optimal policy for arbitrary service time distribut@n
the mean sojourn time in the system between the Gittins optiml  We believe that our results open an interesting avenue for

and popular policies like Processor Sharing, First Come Fist further research. For instance well-known optimality ttssin
Serve and Least Attained Service (LAS). We implement the 4 gingle-class queue like the optimality of the Least Atin

Gittins’ optimal algorithm in NS-2 and we perform numerical . L . .
experiments to evaluate the achievable performance gain. &/ Service (LAS) discipline when the service times are of type

find that the Gittins policy can outperform by nearly 10% the decreasing hazard rate or the optimality of FCFS when the
LAS policy. service time distribution is of type New-Better-than-Usged

Expectation can all be derived as corollaries of Gittinsule
The optimality of thecu-rule can also easily be derived from

We are interested to schedule the jobs in #i¢G /1 queue the Gittins’ result.
with the aim to minimize the mean sojourn time in the system In order to get insights into the structure of the optimal
as well as the mean number of jobs in the system. In opolicy in the multi-class case we consider several relevant
study we restrict ourselves to the non-anticipating scheglu cases where the service time distributions are Pareto arhyp
policies. Let us recall that the policy is non-anticipatifg exponential. We have used these distributions due to the
does not use information about the size of the arriving jobsvidence that the file size distributions in the Internet are
In [1] Gittins considered an\//G/1 queue and proved thatwell presented by the heavy-tailed distributions such astBa
the so-called Gittins index rule minimizes the mean deldy. Alistributions with the infinite second moment. Also it was
every moment of time the Gittins rule calculates, dependimg shown that the job sizes in the Internet are well modelled
the service times of jobs, which job should be served. Gittinvith the distributions with the decreasing hazard rate (PHR
derived this result as a byproduct of his groundbreakingltes We refer to [12], [13], [14] for more details on this area.
on the multi-armed bandit problem. The literature on multin particular, we study the optimal multi-class scheduling
armed bandit related papers that build on Gittins’ restitige in the following cases of the service time distributionsotw
(see for example [2], [3], [4], [5], [6], [7], [8]). Howevethe Pareto distributions, several Pareto distributions, opeeh
optimality result of the Gittins index in the context of theexponential and one exponential distributions. Using gedg
M/G/1 queue has not been fully exploited, and it has ngwb approach and the collective marks method we obtain, for
received the attention it deserves. every class, the mean conditional sojourn time. This allog/s

In the present work we generalize the Gittins index approatth compare numerically the mean sojourn time in the system
to the scheduling of the multi-clagd /G /1 queue. We empha- between the Gittins optimal and popular policies like Pesoe
size that Gittins’ optimality in a multi-class queue holdgler Sharing (PS), First Come First Serve (FCFS) and LAS. We
much more general conditions than the condition required ffind that in a particular example with two classes and Pareto-
the optimality of the well-knowreu-rule. We recall that the type service time distribution the Gittins’ policy outpenins
cp-rule is the discipline that gives strict priority in desdémg LAS by nearly 25% under moderate load.
order ofci ., wherec, andyy, refer to a cost and the inverse  From an application point of view, our findings could be
of the mean service requirement, respectively, of class applied in Internet routers. Imagine that incoming packets
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are classified based on the application or the source tiNate further that/(a, A) is continuous with respect ta.
generated them. Then it is reasonable to expect that theeserv Definition 2: The Gittins index function is defined by
time distributions of the various classes may differ fronstea
other. A router in the Internet does not typically have asces G(a) = sup J(a,A), 2
to the exact required service time (in packets) of the TCP 420
connections, but it may have access to the attained serficda anya > 0.
each connection. Thus we can apply our theoretical findingée call G(a) the Gittins indexafter the author of book [1],
in order to obtain the optimal (from the connection-levekhich handles various static and dynamic scheduling prob-
performance point of view) scheduler at the packet level. Wems. Independently, Sevcik defined a corresponding index
implement the Gittins’ scheduling in the NS-2 simulator andihen considering scheduling problems without arrivalslii |
perform experiments to evaluate the achievable performarin addition, this index has been dealt with by Yashkov, sé [1
gain. We found that in particular examples the Gittins policand references therein, in particular the works by Klimox][1
can outperform the LAS policy by nearly%. [18].

The structure of the paper is as follows: In Section 2 we Definition 3: For anya > 0, let
review the Gittins index policy for the single-cladd/G/1
queue and then provide a general framework of the Gittins A*(a) =sup{A > 0] J(a,A) =G(a)}.  (3)
index policy for the multi-class\//G/1 queue. In Section 3,t§y definition, G(a) = J(a, A*(a)) for all a.

we study the Gittins index policy for the case of two Pare
y policy Definition 4: The Gittins index policyr, is the scheduling

distributed classes and we generalized the results topteulti | =~ . , { . .
Pareto classes. In Section 4 we study the case of expongﬁ-c'pl'ne that aF every instant of time gIves service toj_m
tial and hyper-exponential distributions, we obtain atiely the system with highesE(a), wherea is the job's attained

results and provide numerical examples. Section 5 conslud€""!C€- L . L
the paper. Theorem 1:The Gittins index policy minimizes the mean

sojourn time in the system between all non-anticipating
[l. GITTINS POLICY IN MULTI-CLASS M /G/1 QUEUE scheduling policies. Otherwise, in tHe/G/1 queue for any

Let us first recall the basic results related to the Gittinein 7 € 11,
policy in the context of a single-clase//G/1 queue.

Let IT denote the set of non-anticipating scheduling policies.
Popular disciplines such as PS, FCFS and LAS, also called FB
belong toll. Important disciplines that do not belongltbare
SRPT and Shortest Processing Time (SPT).

We consider a single-clas®//G/1 queue. LetX denote
the service time with distributio?(X < z) = F(x). The
density is denoted by (x), the complementary distribution
by F(z) = 1 — F(x) and the hazard rate function Byz) =
f(x)/F(z). Let T (z), = € II denote the mean conditional
sojourn time for the job of size: in the system under the
scheduling policyr, andT ", 7 € II denote the mean sojourn
time in the system under the scheduling policy is \ — ZZN: A\i. For every class — 1,...,N we define

Let us give some definitions. T8 b (0t dt ey
Definition 1: For anya, A > 0, let Ji(a,A) = 75T @arpar @nd then the Gittins index of a class-

A — — i job is defined as7;(a) = supasq Ji(a, A).
J(a,A) = JjOA z(a—”)dt = F(Z): Fla+ A). 1) The mean conditional sojourn timig, (z) for the class-
Jo Fla+t)dt Jo Fla+t)dt job of sizex, i = 1,..., N, and the mean sojourn tin#" in
For a job that has attained servieeand is assigned\ units the system under the scheduling policye IT are defined as
of service, equation (1) can be interpreted as the ratiodwtw in the previous section.
(i) the probability that the job will complete with a quota of Proposition 1:In a multi-class}M/G/1 queue the policy
A (interpreted as payoff) and (i) the expected processce tirfhat schedules the job with highest Gittins ind€x(a), i =

Tg ==

T'<T.

' Proof: See [1]. [ ]
Note that by Little's law the Gittins index policy also
minimizes the mean number of jobs in the system.

We generalize the result of Theorem 1 to the case of
the multi-class single server queue. Let us consider a multi
class M/G/1 queue. LetX; denote the service time with
distribution P(X; < x) = F;(z) foreveryclass = 1,...,N.
The density is denoted by;(z) and the complementary
distribution by F;(x) = 1— F;(z). Jobs of every classarrive
with the Poisson process with rate, the total arrival rate

that a job with attained service and service quota will 1...., N in the system, where is the job’s attained service,
require from the server (interpreted as investment). Nioé t i the optimal policy that minimizes the mean sojourn time.
for everya > 0 Proof: The result follows directly from the application
f(a) Gittins Index Definition 2 and Theorem 1 to a multi-class
J(a,0) = == = h(a), M/G/1 queue. [ |
F(a) _ Let hi(x) = fi(z)/Fi(x) denote the hazard rate function
J(a,00) = F(a) _1/E[X —a|X > dl. of classi = 1,...,N. Let the service time distribution of

fooo Fla+t)dt classé have a decreasing hazard rate. It is possible to show,



see [19], that ifh;(z) is non-increasing, the functiafi(a, A) according to the Pareto distributions, namely
is non-increasing iM\. Thus pei
Gi(a) = Ji(a,0) = hila). (4) (@ + b
Hereb; = m;(c;—1), wherem; is the mean of clasg-i = 1, 2.
As a consequence we obtain the following proposition.  Then f;(z) = bSic;/(x + b;)< 1, i = 1,2 and the hazard rate
Proposition 2:In a multi-classM/G/1 queue with non- functions are

increasing hazard rates functiohs(z) for every classi = hi(z) = Ci i—1.9.
1,..., N, the policy that schedules the job with high&sta), ’ (z+b;)’ ’
i = 1,...,N in the system, where is the job’s attained Tnis functions cross at the point* = 2bizab: Wwithout

Cc1—C:

s_ervice, is the optimal policy that minimizes the mean sBjou|qg5 of generality suppose that > c». Then the behavior of
time. the hazard rate functions depends on the valuds @indb,.
~ Proof: Follows immediately from the Gittins policy Def- | et us first consider the case when the hazard rate function
inition 4, Proposition 1 and equation (4). ® (o not cross, sa** < 0. This happens wheby /by < c¢1/co.

The policy presented in Proposition 2 is an optimal policYhen the hazard-rate functions are decreasing and nev&s cro
for the multi-class single server queue between all NOBNd hy (2) > hy(x), for all z > 0.
anticipating scheduling policies. Let us notice that foe th | et us denot® and functiong(z) in the following way that
single class single server queue the Gittins policy becomes
a LAS policy, as the hazard rate function is the same for all hi(2) = ha(g(x)),  ha(6) = ha(0).
jobs and so the job with the maximal value of the hazard rafée can see thay(d) = 0. For given expressions df;(z),
function is the job with the least attained service. When wie= 1,2 we getg(z) = 2 (z + by) — by, 0 = Sba—b,
serve jobs with the Gittins policy in the multi-class quene tAccording to the definition of functiog(z), the classt job
find a job which has to be served next, we need to calculaiésizex and the clasg-job of sizeg(z) have the same value
the hazard rate of every job in the system. The job which haéthe hazard rate when they are fully served, see Figure 1.
the maximal value of the hazard rate function is served tfidnen the optimal policy scheme is given on Figure 2.

next. B. Optimal policy

Now let us consider several subcases of the describe . . .
; ; obs in the system are served in two queues, low and high
general approach. Depending on the behavior of the hazar

rate functions of the job classes the policy is different. riority queues. The classjobs which have attained service

consider the case with two job classes in the system a&ﬂf 0 are served in the high priority queue with LAS policy.

two subcases: (a) both job classes are distributed withtéare en the class-job achieves) amount of service it is moved

and the hazard rate function do not cross and (b) job sitzoethe second low priority gueue. The clasgbs are moved

distributions are hyper-exponential with one and two pbasgnmedlately to the low priority queue. The low priority queu

and they cross at one point. Then we extend the case of t|soserved only when the high priority queue is empty. In the

. . ow priority queue jobs are served in the following way: the
Pareto job classes to the case/ofPareto job classes. service is given to the job with the highds{a), wherea is the

job’s attained service. So, for every clasg@b with a attained
service the functiorh; (a) is calculated, for every classjob
A. Model description with a attained service the functiom(a) is calculated. After
all values ofh;(a) are compared and the job which has the
highesth;(a) is served.

Now let us calculate the expressions of the mean conditional
sojourn time for the class-and class2 jobs.

IIl. Two PARETO CLASSES

C. Mean conditional sojourn times

Let us denote by indicg$™) and[](?) the values for class-
and clasg2 accordingly.
Let us define as’Tg(z) the n-th moment andoy(j) be the
utilization factor for the distributior¥; () truncated aty for
1 = 1,2. The distribution truncated af equals toF(z) for
Figure 1. Two Pareto classes, hazardigure 2. Two Pareto classes, policy? < ¥ and equals td whenz > y. Let us denotdV, , the
rates scheme mean workload in the system which consists only of class-
jobs of size less tham and of clas? jobs of size less than
We consider the case when the job size distribution fung: According to the Pollaczek-Khinchin formula
tions are Pareto. We consider the two-class single server —) —(2)
M/G/1 queue. Jobs of each class arrive to the server with _ MXZ T+ Ao XY
Poisson process with ratgs and\,. Job sizes are distributed oy 2(1 — pt — )

DO o

ha(z)

0 glz)




Now let us formulate the following Theorem. jobs of size more thef also wait in the system to be served
Theorem 2:In the two-classM/G/1 queue where the job in the low priority queue, the mean waiting time for them is
size distributions are Pareto, given by (5), and which isdeh T} (#). Property 1 shows that these two mean waiting times
uled with the Gittins policy described in Subsection IlI#Be are not equal, so classjobs and clasg-jobs wait different

mean conditional sojourn times for clabsand clas2 jobs times to start to be served in the low priority queue.

are Property 2: Let us consider the condition of no new arrival.
x4+ Weo According to the optimal policy structure in the low prigrit
Ti(x) = 17(1’)’ z <0, (6) gueue jobs are served according to the LAS policy with
:c_fg;/[/ different rates, which depend on the number of jobs in each
Ty (x) = (1)—””’-"(”(”;), x>0, (7) class and hazard rate functions. For the case when there are
L=pz" =Py no new arrivals in the low priority queue we can calculate the
9(2) + W (o) rates with which the clastjobs and clasg-jobs are served
To(9(@) = —5—@ > *=0 (8) in the system at every moment of time. We consider that all
L=pa’ = Py(x) the classt jobs and all the clas8-jobs already received the

Proof: Let us give a very general idea of the proof. T¢@me amount of service. Let; and n, be the number of
obtain expressions (7), (8) we use the fact that the secdfBs in classt and class? and letz; andz; be the attained
low priority queue is the queue with batch arrivals. To obtaiServices of every job in these classes. Then at any moment
expressions of the mean batch size with and without the(z1) = h2(x2). If the total capacity of the server is, then
tagged job we apply the Generating function analysis usifff &1 andA, be the capacities which each job of clasand
the method of the collective marks. m class2 receives. Then

The obtained expressions (6), (7) and (8) can be interpreted
using the tagged-job and mean value approach.

Let us consider class-jobs. The jobs of sizer < 6 are  Also b (z; + A1) = ho(zs + Az). As A is very small (and

served with the LAS policy, so the mean conditional sojourgy a5 wellA; andA») according to the LAS policy, then we

time is the known, see [20, Sec. 4.6},(z) = ””ltw(’i’)“, z <0, can approximate

nA1 +ngAs = A.

whereW, o is the mean workload anﬁél) is the mean load _ / .
in the system for class-job of sizez. The mean workload hi(z + Aq) = hi(@) + Aiki(@), i =1,2.

W,.0 and mean loag” consider only the jobs of the highThen from the previous equations we have 1) (z1) =

priority queue of class- Ashly(x2). Then
For the jobs of sizer > 6 the expression (7) can be

presented in the following wayl'(z) = = + W, g + Ay _ hy(z2)

Ty () (") + pf&)), where A mih(@2) +nohy(21)’
« = is time which is actually spent to serve the job; & - ha(z1) )
e W, 4(x) is the mean workload which the tagged job finds A mhy(22) + nohi(z1)

in the s(ygtem é‘?d which has to be processed before itipjs result is true for any two distributions for which the
o Tu(z)(pz’ + p,,) is the mean time to serve the jobsya7ard rates are decreasing and never cross. For the case of

which arrive to the system during the service time of thgyo pareto distributions given by (5) we have the following:
tagged job and which have to be served before it.
Aq c1 As C2

Let us describe several properties of the optimal policy. = =

A nicy +n202’ A nicy +n262.

D. Properties of the optimal policy So, for the case of two Pareto distributions the servicesrate

Property 1: When the clasg- jobs arrive to the server of classi and class2 jobs do not depend on the current jobs’
they are not served immediately, but wait until the highttained services.

priority queue is empty. The mean sojourn time is the limit property 3: As one can see from the optimal policy descrip-

limg ()0 T2(g(z)). As lim, ¢ g(z) = 0, then tion, the classt and class2 jobs leave the system together if
—5(1) they have the same values of the hazard rate functions of thei
lim Th(g(z)) = W0 _ M Xy _ sizes and if they find each other in the system. According to

g(z)—0 1—pP 201 = piMy2 the definition of theg(z) function we can conclude that the

classi job of sizex and class2? job of sizeg(x), if they find
. each other in the system, leave the system together. Bug thes
lim To(g(x)) # T () = + W0 jobs do not have the same conditional mean sojourn time,

. . . . Ti(z) # T2(g(2)).
Class?2 jobs wait in the system to be served in the low priority
queue, the mean waiting time lisn,(,)_o T>(g(z)). Classi  This follows from expressions (7) and (8).

Let us notice that



E. Two Pareto classes with intersecting hazard rate fumgtio

Now let us consider the case when the hazard rate function
cross, thena** = (caby — c1b2)/(c1 — ¢c2) > 0. As we
considerede; > co, then h1(0) < ho(0) and then clasg-
jobs are served in the high priority queue until they receive
0* = (coby — c1b2)/c; amount of service. Heré* is such that
h2(6*) = hy1(0) andg(6*) = 0. Theg(z) function crosses the
y = x function at pointa**. As we show in Property 2, the
rates with which class-1 and class-2 jobs are served in the lo
priority queue depend only on the andc, parameters and so
class-1 jobs always have priority over class-2 jobs aceoordi
to the service rates. We can rewrite the expressions of mean

conditional sojourn times of Section Ill, Theorem 2 in theigure 4.

following way. P Va
Corollary 1: In the two-classM/G/1 queue where the job
size distributions are Pareto, given by (5) such that thatihz

rate functions cross, and which is scheduled with the Gittin

--pPs
- =LAS
—Gittins

05 055 06 065 07 075 08 08 09 095

Two Pareto classes, mean sojourn times with respebe load

Table |
TwO PARETO CLASSES PARAMETERS

optimal policy, the mean conditional sojourn times for skas ‘\// 20510 2612 671014 5'1829 gll 04020 o 05%’0 55
and class jobs are ¥, 100 125 005 1.35 | 0.25 [ 0.25.0.74] 05.09
z+ W,
Tl (I) = %, x Z O,
T Pr T Py(a) “mice-elephant” effect. Also it is known that the file sizeg a
Ty(z) = z+ Wz.,o’ z < 6, well presented _by the heavy—tailgd distributions Iike_ Rare
1— p§3> Here the clasg-jobs represent "mice” class and clas$abs
(@) + Wy g "elephants”. We consider that the load of the small files is
D)) = =2k, w =6 f i journ time i i
0 @ = ixed anpl find the mean sojourn time in the syste_m according
Pz Py(a) to the different values of the "elephant” class arrival rate

Proof: The proof follows from the previous discussion. We compare the mean sojourn time for the Gittins policy,
m PS, FCFS and LAS policies. These policies can be applied ei-

ther in the Internet routers or in the Web service. The exgukbct

F. Numerical results

. . - —PS
sojourn times for these policies are, see [ZDf, = % for

the PS policyT <" = p/X + We oo for the FCFES policy,

—CFS

= ='LAS
— Gittins

05 055 06 065 07 075 08 08 09 095

where W, .. means the total mean unfinished work in the
. system. For the LAS policy

=Las 1

T =L [ T @
X Jo
T+ We o
1—pf? — o

TLAS(.T) _

’ where f(x) = Ay f1(z) + Ao fa(z) @and X = Ay + Ao.
2 see The mean sojourn times for the parameters $gtand V5
are presented in Figures 3,4. For the result¥pfve do not

plot the mean sojourn time for the FCFS policy as class-
has an infinite second moment. As one can see Gittins policy

Figure 3.
Vi

Two Pareto classes, mean sojourn times with respebe load

minimizes the mean sojourn time. In particular, it outparfe
the LAS policy by almos®5 —30% when the system is loaded

by around90%. We note that the PS policy produces much
We consider two classes with parameters presented yirse results than the LAS and Gittins policies.

Table | and we calculate the mean sojourn time in the system

numerically, using the expressions of the mean conditiorfd Simulation results
sojourn time (6), (7) and (8). We provide the results for two We implement Gittins policy algorithm for the case of two

different parameters sets, which we cHll and V5.

Pareto distributed classes in NS-2 simulator. The algaorith

It is known that in the Internet most of the traffic isis implemented in the router queue. In the router we keep
generated by the large files (80%), while most of the filahe trace of the attained service (by attained service weamea
are very small (90%). This phenomenon is referred to #se number of transmitted packets) by every connection in



Table Il

the_ system. We keep the trace during some time intgrvql after MEAN SOJOURN TIMES
which there are no more packets from the connection in the
queue. Ver. TPT | TRAS | T g1 92

Itis possible to select the packet with the minimal sequencg Vs: NS-2 | 18.72 | 210 | 208 | 88.89 | 0.95%
numb_er of thg connectiqn which has to be served ir_l_stead 0 \\//S;;:Ies?rzy P%‘;?;n ;:gg i:gé ;g:gg‘: 39%0587?
selecting the first packet in the queue. In the current sitimia Vs, theory | PS: 6.46| 3.25 219 | 66.10% | 32.67%
this parameter does not play a big role according to the

selected model scheme and parameters. (There are no drops

in the system, so there are no retransmitted packets. ThenL#S policy is 10%. In both versions the relative gain for the
the packets arrive in the same order as they were sent.) corresponding analytical system is much higher and reaches

The algorithm which is used for the simulations is asp to36%. We explain this results with the phenomena related

follows: to the TCP working scheme.
Algorithm H. Multiple Pareto classes
on packet dequeue We consider a multi-class single senii/G/1 queue. Jobs
select the flowf with the maxh;(as), where arrive to the system inV classes. Jobs ofth class,i =
ay is the flow’s attained service 1,..., N arrive according to the Poisson arrival processes with
select the first packet; of the flow f in the queue rates \;. Jobs size distributions are Pareto, namglyz) =
dequeue selected packst 1 - ﬁ i =1,...,N. Then, the hazard ratds (x) =

setay =ay +1 Gt = 1,..., N, never cross. Without loss of generality,
let us consider that; > co > ... > cn. Let us define the

To compare Gittins policy with the LAS policy we also X )
P poicy policy g:lues off; ; andg; ;(x),4,j = 1,..., N in the following way

implemented LAS algorithm in the router queue. Accordin

to the LAS discipline the packet to dequeue is the packet froff (0:5) = hy(0), hiﬁ?ﬁ) = h;(9i,(x)). Then we gey; ;(z) =

the flow with the least attained service. o (@ +1), 05 = o 1. Let us'notlce that,; < ,9’““
The simulation topology is the following: jobs arrive to‘f_’Ind Oie > Oipapy b =1,...,N,i=1,....N—1,1i#F,

the bottleneck router in two classes, which represent mizté'é k + 1. Then the optimal policy is the following.

and elephants in the network. Jobs are generated by HTROptimal policy

sources which are connected to TCP senders. The file Sizefhere areV queues in the system. The clasibs arrive to
dlstr|but|pns are RaretoE- =1 - bi*/(x + bi)q_’ =12 he system and go to the first-priority queueFhere they are
Jobs arrive according to the Poisson arrivals with rateand served until they ge; » of service. Then they are moved to
Xo. For the simulations we selected the scenario describedﬂj{é queue2, which is sérved only when the quedds empty
Subsecnon.(;II-E.h I ion h h In the queue2 the job of classt are served with the jobs of
We consider that a conne(_:t|on ave t 1€ Same prgpagat@gssg with the Gittins policy. When the jobs of clagsattain
delays,12 ms. The bottleneck link capacity g =100 Mbit/s. servicef, 5 they are moved to the quedeWhen the jobs of

The_5|mulat|on run time i2000 ms. We_ provide two different . o<so attain servic, ; they are also moved to the quebie-
versions of parameters selection, which we cal| ¥ad Vs. ’

' . And so on.
In Vs, first class take®5% of the total bottleneck capacity
and in Vs it takes50%. J. Mean sojourn times
The parameters we used are given in Table II. To find the expressions for the mean conditional sojourn

times in the system we use the analysis which we used in in-
terpretation of the mean conditional sojourn times expoess
in the case of two class system, see Section Ill.
Ver. | c c2 [mi [ma | o1 | p2 p Let the tagged job be from clagsef sizex. The jobs which
Vs, | 1001 1251 05 ] 6.8 1 025 050 | 0.75 have the same priority in the system and which have to be
Vs; | 10.0 | 225| 05 | 45 | 0.50 | 0.37 | 0.87 . . .
served before the tagged job are: clagebs of size less than
7, classt jobs of size less thap; ;(x).

The results are given in Table Ill. We provide results for — () @ o
the NS-2 simulations and the values of the numerical mean'Ve denoteX; " the n-th moment andp;" the utilization

sojourn times with the same parameters. We calculate figtor for the distribution;(z) of the class;, i = 1,..., N
related gain of the Gittinsqpolicy in comparison with DrojiTa truncated at:. The mean workload in the system which has to
ns pot

and LAS policiesg; — Z ,;,TTGM and g, — TL‘:S;AT;GI’“ be served before the tagged job is then found with Pollaczek-

We found that with the NS-2 simulations the gain of thghInChIn formula and equals to
Gittins policy in comparison with LAS policy is not so Z?Ll AiX?i-(w)
significant when the small jobs do not take a big part of the Wa g 2@)gin (@) = N e .
system load. As one can see in;Mshen the class-load is 2(1 = 225zt Pgr i)
50% the related gain of the Gittins policy in comparison witiThen we formulate the theorem.

Table Il
TwO PARETO CLASSES SIMULATION PARAMETERS




Theorem 3:For classt jobs of sizex such asf; , < =z < Let us consider the case when > uy > ps and p; <

01p+1, p = 1,...,N and corresponding clagsjobs with pus+(1—p)us. Then it exists the unique point of intersection
sizesgy i (x), k = 2,...,p the mean conditional sojourn timesof h,(x) andh,. Let us denote* the point of this intersection.
are given by The value ofa* is the solution ofhz(x) = ;. Solving this
equation, we get that
Te) = — LW 012(), - 915(2)) ! ?
L= p1(x) = p2(g12(2) = - = pplg1,p())’ RN S ( P p2— m) _
Te(g1p(@)) = 91.6(@) + W (2, g1,2(®), - - -, 1,p(¥)) K2 = H3 L=pp —ps
kAL 1—pi(x) — p2(g912(z)) — ... — pp(g1,p(x)) " The hazard rate function scheme is given in Figure 5. Then,
Here we consider that y.1 = oo, i = 1,..., N. the optimal policy is the following.

Proof: Similar to the proof of Theorem 2. B A. Optimal policy.

There are three queues in the system, which are served with
the strict priority between them. The second priority quisue
served only when the first priority queue is empty and thealthir
priority queue is served only when the first and second pyiori
gueues are empty. The claggebs arrive to the system are
served in the first priority queue with the LAS policy until
they geta* amount of service. After they get* amount of
service they are moved to the third priority queue, wherg the
are served according to the LAS policy. The clagebs arrive
to the system and go to the second priority queue, where they
are served with LAS policy. Sinck;(z) = u1, classi jobs
can be served with any non-anticipating scheduling politg
Figure 5. Exponential and HE Figure 6.  Exponential and HE scheme of the optimal policy is given in Figure 6.
classes, hazard rates. classes, policy description. According to this optimal policy we find the expressions of

the expected sojourn times for the cldsand class? jobs.
We consider two clasd//G/1 queue. Jobs of each class

arrive with the Poisson arrival process with ratesand \,. B- Expected sojourn times

The job size distribution of clask4s exponential with mean Let us recall that the mean workload in the system for the
1/p1, and hyper-exponential (HE) with two phases for classe¢lassi jobs of size less thar and clas®2 jobs of size less
with the mean(usp + (1 — p)ua)/(u2ps). Namely, thany is W, , and is given by (6). We prove the following

F =1 —me g -1 — o 1 —psx 9 Theorem.
1(@) =1-e » Folz) = 1—pe —(1=ple - 9 Theorem 4:The mean conditional sojourn times in the

The hazard rate function of clagsis a constant and equals!/G/1 queue with job size distribution given by (9) under
to hy = p1. The hazard rate function of the clads(z) = Gittins optimal policy described in Subsection IV-A are giv

—H2T — —Hu3T . . .
”“;Z,MJELZ)ZETLSI , © > 0. is decreasing inc. As both by

IV. HYPER-EXPONENTIAL AND EXPONENTIAL CLASSES

ha(a2)

hazard rate functions are non-increasing the optimal ypolic e+ Wy

which minimizes the mean sojourn time is Gittins policy lthse Ti(z) = 1_ pgﬁl) _ p(2*) » #€[0,09], (10)

on the value of the hazard function, which gives service o th T+ Wo u ‘

jobs with the maximal hazard rate of the attained service. Ih(z) = ——» =€l0,d], (11)
For the selected job size distributions the hazard rate L=ps

functions behave in different ways depending on parameters Ty(z) = %, y € (a*,00). (12)

1, e, 3 andp. The possible behaviors of the hazard rate 1—poss — pa

functions determine the optimal policy in the system. If the  proof: Similar to the proof of the Theorem 2. To find
hazard rate functions never cross, the hazard rate of tlasgxpressions of the mean conditional sojourn times we use the
is hlgher than the hazard rate of Claasg'hen the ClaSS-jObS mean-value ana|ysi5 and tagged jOb approach_ ]

are served with priority to classjobs. This happens when

hi > ha(z), = € (0,00). As ha(z) is decreasing, then this C- Pareto and exponential classes

happens whep; > hy(0). Let us consider thats > ug3, then We can apply the same analysis for the case when class-
ashs(0) = puo+ (1 —p)us anduy > ho(0) if 1 > ue > pus. 1 job size distribution is exponential and clasgeb size

For this case it is known that the optimal policy is a striadistribution is Pareto. Let us consider the case when thardaz
priority policy, which serves the cladsjobs with the strict rate functions of clas$-and class? cross at one point.

priority with respect to the classjobs. From our discussion Let Fi(z) = 1 — e % and Fy(z) = 1 — b5?/(z + ba)“2.

it follows that this policy is optimal even ific > 1 > p3, Thenh; = py andhs(z) = co/(z+b2). The crossing point is

but still 11 > pus + (1 — p)ps. a* = ca/p1 — be. Whena* < 0 the hazard rate functions do



not cross and then the optimal policy is to give strict ptiori [5]
to the classt jobs. If a* > 0 then the hazard rate functions

: . Lo i tHe)
cross at one point and the optimal policy is the same as in tk{
previous section. Then the expressions of the mean conditio
sojourn timed of clasg-and clas2 are also (10), (11) and 71
(12).

[8]
V. CONCLUSIONS

In [1] Gittins considered ad//G/1 queue and proved that [9
the so-called Gittins index rule minimizes the mean delay.
The Gittins rule determines, depending on the service tim@8l
of jobs, which job should be served next. Gittins derived
this result as a by-product of his groundbreaking results @]
the multi-armed bandit problem. Gittins’ results on the taul
armed bandit problem have had a profound impact and it['isz]
extremely highly cited. However, and in despite of the big
body of literature on scheduling disciplines in single serv
queues, Gittins work in th@//G/1 context has not received 3
much attention.

In [19] authors showed that Gittins’ policy could be used4l
to characterize the optimal scheduling policy when the hhzat15
rate of the service time distribution is not monotone. In the
current work we have used Gittins’ policy to characterizé®l
the optimal scheduling discipline in a multi-class queu;y
Our results show that, even though all service times have a
decreasing hazard rate, the optimal policy can signifigantt8l
differ from LAS, which is known to be optimal in the single-j;q;

]
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747-791, 1996.
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J. Shanthikumar and D. Yao, “Multiclass queueing syste Polyma-
troidal structure and optimal scheduling contrdperations Research
vol. 40, no. 2, pp. 293-299, 1992.

P. Nain and D. Towsley, “Optimal scheduling in a machivith stochas-
tic varying processing rate,JEEE/ACM Transactions on Automatic
Control, vol. 39, pp. 1853-1855, 1994.

M. Nabe, M. Murata, and H. Miyahara, “Analysis and madgl of
World Wide Web traffic for capacity dimensioning of Internatcess
lines,” Perform. Eval, vol. 34, no. 4, pp. 249-271, 1998.

M. E. Crovella and A. Bestavros, “Self-similarity in Wd Wide
Web traffic: evidence and possible causéEEE/ACM Transactions on
Networking vol. 5, pp. 835-846, 1997.

C. Williamson, “Internet traffic measurementEEE Internet Comput-
ing, vol. 5, pp. 70-74, 2001.

] K. Sevcik, “Scheduling for minimum total loss using &ee time

distributions,” Journal of the ACMvol. 21, pp. 66-75, 1974.
S. Yashkov, “Mathematical problems in the theory of relgiaprocessor
systems, Journal of Mathematical Sciencesol. 58, pp. 101-147, 1992.

1 G. Klimov, “Time-sharing service systems. Theory of Probability and

Its Applications vol. 19, pp. 532-551, 1974.

——, “Time-sharing service systems. iiTheory of Probability and Its
Applications vol. 23, pp. 314-321, 1978.

S. Aalto and U. Ayesta, “Mean delay optimization for thd/G/1

server case. We demonstrate that in particular cases PS hasqueue with Pareto type service times,” Extended abstract in ACM

much worse performance than Gittins policy.

Using NS-2 simulator we implemented the Gittins optimehzo]
policy in the router queue and provided simulations for sgve
particular schemes. With the simulation results we fourad th
Gittins policy can achiev&0% gain in comparison with LAS
policy and provides much better performance than DropTail
policy.

In future research we may consider other types of service
time distributions. The applicability of our results in regs-
tems like the Internet should also be more carefully evelliat
We also would like to investigate the conditions under which
Gittins policy gives significantly better performance thakS

policy.
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