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Abstract—Anomaly detection methods typically operate on
pre-processed,i.e., sampled and aggregated, traffic traces. Most
traffic capturing devices today employ random packet sampling,
where each packet is selected with a certain probability, to
cope with increasing link speeds. Temporal aggregation, where
all packets in a measurement interval are represented by their
temporal mean, is then applied to transform the traffic trace to
the observation timescale of interest. These pre-processing steps
affect the temporal correlation structure of traffic that is used
by anomaly detection methods (e.g., Kalman filter, PCA), and
have thus an impact on anomaly detection performance. Prior
work has analyzed how packet sampling degrades the accuracyof
anomaly detection methods; however, neither theoretical explana-
tions nor solutions to the sampling problem have been provided.

This paper makes the following key contributions: (i) It
provides a thorough analysis and quatification of how packet
sampling and temporal aggregation modify the signal properties
by introducing noise, distortion and aliasing. (ii) We showthat
aliasing introduced by the aggregation step has the largestimpact
on the correlation structure. (iii) We further propose to replace
the aggregation step with a specifically designed low-pass filter
that reduces the aliasing effect. (iv) Finally, we show thatwith our
solution applied, the performance of anomaly detection systems
can be considerably improved in the presence of packet sampling.

I. I NTRODUCTION

A. Motivation

Measuring network traffic is crucial for network operators
for the supervision of their networks. Applications using these
measurements are, for example, network planning, accounting,
and more recently traffic anomaly detection. An important
problem with network measurements is related to the burden
of capturing, storing, transferring, and processing the huge
amount of data generated at the measurement points. Different
methods have been proposed to cope with the increasing traffic
rates observed in networks. The most prominent of these
techniques is packet sampling. Packet sampling is inherently a
lossy process, discarding potentially useful information. One
has to assess and eventually to compensate for the effects of
packet sampling, before using sampled data for networking
applications.

The effect of sampling on estimating traffic statistics is a
well investigated topic [4]. These studies have shown that
packet sampling has indeed an effect on the precision of
estimating volume statistics that depends on the sampling rate.
Literature has consistently reported that anomaly detection

schemes are perturbed by packet sampling, even with rela-
tively high sampling rates [2], [6]. However, no convincing
explanations and evaluations have been provided for these
observations.

B. A Signal-Processing View on Packet Sampling and
Anomaly Detection

Statistical anomaly detection is applied on time series
obtained after two consecutive operations: packet sampling
and temporal aggregation. Fig. 1 illustrates the differentsteps
that are involved in data preprocessing and anomaly detection.
As mentioned before, packet sampling is applied because of
router constraints to leverage the burden of packet captureand
processing on operational elements in the network. The packet
sampling step is generally followed by a temporal aggregation,
that consists of summing (or averaging) the amount of data
that arrives during a time windows. This step is applied to
achieve data compression and to obtain time series at a relevant
observation granularity. Statistical anomaly detection methods
are applied to the resulting time series. For anomaly detection
an entropy reduction step is applied to the data. This entropy
reduction generally consits of filtering the normal behavior
from the time series. This filtering is typically based on
second order statistics that relies on a correct estimationof the
temporal correlation structure. The anomaly detection itself is
done by detecting rupture in the temporal or spatial correlation
structure of the time series obtained after packet samplingand
aggregation. These rupture will appear in the filtered signal
after entropy reduction. A fairly large spectrum of networking
applications falls into this category for example PCA, Kalman
filtering, or wavelet-based anomaly detection approaches.

Thus, for analyzing the effect of packet sampling on the
performance of statistical anomaly detectors, its impact on the
temporal correlation structure needs to be assessed. Fourier
theory establishes a strong duality between the frequency and
the time domain. Any effect of sampling on the spectra has a
(possibly not trivial) effect on the time domain andvice versa.
Estimating the spectra of traffic can thus provide insight into
the effects on anomaly detection. This is the main motivation
for taking the detour over spectrum estimation before getting
into anomaly detection.
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Fig. 1. Block diagram depicting the common-practice steps for pre-processing and anomaly detection. Packets are sampled with a ratep, and then transformed
into a time-series by temporal aggregation with periodT . Anomaly detection first reduces the time series entropy by applying a model of ordern, and then
makes an anomaly decision applying a preset thresholdd. The output of the anomaly detection systems is a series of alerts.

C. Contributions

In section II we first derive a model for the packet signal at
the input of the processing chain. We then carefully study
the impact ofpacket samplingand derive the spectrum of
the signal at the output of the packet sampling block. We
find that packet sampling introduces a wide-band noise that is
proportional to the inverse of the packet sampling rate. Next,
we examine the impact ofaggregationand time sampling
when applied to the packet sampled signal. We show that
this step can be decomposed into an integration (summation)
and a regular temporal sampling. We derive the spectrum of
the aggregated signal, and show that aggregation and time
sampling introduce linear distortion and aliasing.

In section III we advocate an alternative approach to ag-
gregation that applies a specifically designedlow-pass filter
to achieve the same effect as aggregation (i.e., translation
to the desired granularity of interest), but without further
distorting and aliasing the packet sampled signal. To validate
our approach, we compare the spectra of the signal after
aggregation and low-pass filtering using synthetic traffic and
show the signal-to-noise ratio (SNR) for both variants for real-
world traffic. We find that the low-pass filter can effectively
avoid the aliasing in the spectra and leads thus to a better SNR
estimation.

In section IV we examine the impact of packet sampling and
aggregation vs packet sampling and low-pass filtering on the
normal behavior modeling assuming an auto-regressive (AR)
model is used for calibration and a Kalman filter as whitening
filter. We show in particular that the noise of a low-pass filtered
signal does not have an important effect on the characteristics
of the normal behavior model. Further, we provide a discussion
on the impact of both approaches on the detection step.

In section V we validate our findings with real-world data.
We show that, when performed correctly, packet sampled data
can still be used for anomaly detection. However, there is a
fundamental trade-off one has to be aware of: to tackle with
the increased noise level introduced by low sampling rates,
one has to increase the time scale (or equivalently reduce the
bandwidth) of the anomalies to be detected.

We take care throughout the paper to relate signal processing
parameters as Signal to Noise Ratio, sampling rate,etc., to
parameter relevant to the network practitioner as False alarm
rate, detection rate,etc. (Section IV ). As packet sampling

is widely used in practice and we believe the conclusion of
this paper to be relevant to practical situations, our ambition
is to make this paper accessible to the largest audience of
the networking community. We are therefore adding a fair
amount of introductory materials in classical sampling theory,
that might be seen as trivial by some part of the community
but not by all of it. A sign of this last point is that even if
applying an anti-aliasing low pass filter before sampling isa
trivial step in digital signal processing, we show in the paper
that it has been foreseen by the community in the relatively
large literature on effect of packet sampling.

II. SAMPLING AND AGGREGATION

In this section, we investigate the effect of packet sampling
and aggregation on the spectrum of the Internet traffic. There-
fore we first introduce a model for Internet traffic that is used
in the subsequent analysis. We show with the help of spectral
analysis that packet sampling is essentially adding a noiseto
the spectrum. Then we illustrate that aggregation further adds
linear distortion and aliasing to the traffic signal.

A. Internet Traffic Model

From an IP layer or above perspective, traffic flowing on
a link is a sequence of packets of sizeLi arriving at time
Ti. Packet arrivals are by nature discrete. However, from the
signal processing point of view, an Internet traffic processis
a time-continuous process as the arrival time might take any
value1. Modeling traffic as an evenly-spaced discrete signal of
packet sizes means to ignore the arrival time of packetsTi in
the analysis and results in dismissal of the temporal context2.

We model the traffic process as a modulated stochastic point
process defined asX(t) =

∑

i Liδ(t − Ti), whereδ(.) is the
Dirac Delta impulse. We assume that the arrival timesTi and
packet sizesLi are random variables. Generally, this process is
assumed to be stationary,i.e.,E{X(t)

}

= µ, E{X(t)X∗(t+
τ)
}

= R(τ) and hence its Power Spectral Density (PSD) can
be defined.

The processX(t) is built using two ingredients: a con-
tinuous point process{Ti} defining the packet arrival and

1There is indeed a smallest possible time interval due to the speed limitation
of the physical link, but we assume it to be very small.

2This is applicable in some contexts. See for example [1] where this
interpretation is used for applicative flow recognition.
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a discrete process{Li} describing the packet size. A closed
analytic formula for the PSD is only known for the case where
the packet arrival timesSi = Ti−Ti−1 form a renewal process
[10]:

SX(Ω) = λΦ(Ω) − λ2E{L}2
δ(Ω) (1)

whereλ is the rate of packet arrivals and

Φ(Ω) = 2Re
∑

k≥0

(E{e−j2πΩS
})k

RL(k) − RL(0), (2)

where RL(k) = E{LiLi+k

}

is the covariance function of
packet sizes andE{e−jΩS

}

is the characteristic function of
the distribution ofS.

Whenever one knows the distribution of the inter-arrival
times S as well as the autocorrelation of the packet sizes
RL(k), one may insert these values into the above formula
and derive the PSD analytically. However, as explained before,
the formula is only valid for renewal arrivals and no closed
formula is known today for more general arrival processes.
Unfortunately, empirical observations on Internet trafficare in
contradiction with this hypothesis [8]. We have therefore,to
resort to a direct estimation of the PSD to rely on as few
assumptions as possible.

It is important to note thatlimΩ→∞ = λRL(0) so that the
bandwidth of the traffic process becomes infinite. Indeed, the
infinite bandwidth is an artifact of the modeling assumption
that traffic is a modulated point stochastic process. In fact,
at the physical layer a packet is not a Dirac Delta impulse
but rather a flat pulse with a duration proportional to the
packet length. For example, on a 1 Gbit/s link with a minimal
packet size of 60 bytes (40 bytes of TCP/IP header plus 20
bytes of Ethernet header), one would see pulses lasting for
480 nanoseconds, occupying a bandwidth of around 6 MHz.
This means that physically speaking the real bandwidth is not
infinite, but rather in the order of several megahertz. Our model
estimates the spectra correctly up to a bandwidth of several
hundred kilohertz. For higher bandwidth, however, one should
resort to a precise modeling of the physical layer process. As
the bandwidth of interest for anomaly detection is in the order
of Hertz, we are save to use the defined model.

B. Impact of Packet Sampling

When packet sampling is applied to a trace, we select a
sample of packets to observe,i.e. the traffic is only observed at
the time of arrival of the selected packets. The PSD of a packet
sampled process̃X(t) can be related to the PSD of the initial
processX(t). Let’s assume that packet sampling is applied
to Internet traffic with intensityλ by keeping each sample
with probability Z. The spectrum of the resulting process is
obtained as [3]:

SX̃(Ω) = E{Z}2SX(Ω) + λVar
{

Z
}

(3)

This equation shows the effect of packet sampling on PSD
estimation. The PSD of the sampled trace consists of (i) the
PSD of the initial signalX(t) attenuated by a factorE{Z}2

,
and (ii) a noise termλVar

{

Z
}

that translates to a wide-band
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Fig. 2. Power Sprectral Density (PSD) and theoretical spectra for a synthetic
packet trace that is sampled with decreasing packet sampling rates. Packet
sampling effectively decreases the amplitude of the spectra and increases the
noise level.

white noise with varianceλVar
{

Z
}

. The signal-to-noise Ratio
(SNR) after sampling is equal to:

SNR =
E{Z}2

BVar
{

Z
}

∫ B

2

−B

2

SX(Ω)dΩ. (4)

For a uniform packet selection with probabilityp the SNR
becomes proportional to p

(1−p) ; for small values ofp the SNR
becomes approximatively proportional to the sampling ratep.

Let’s see if we can reproduce these theoretical results in
practice. We first build a suitable synthetic trace using twoin-
gredients: (i) a packet size distribution and (ii) a packet arrival
process. Packet sizes are generated asLn = L+100∗ln where
L is a fixed value set toL = 500 andIn is an Auto-Regressive
(AR) process of order 3 defined asln =

∑3
k=1 akIn−k + ǫn,

with (a1, a2, a3) = (0.5, 0.6,−0.8). The autocorrelation of
the packet size can be easily derived numerically using the
Wiener-Khinchin theorem as

RL(k) = L2 + F−1

(

1

|1 +
∑3

k=1 akejkω |2

)

(5)

whereF−1(.) is the inverse discrete Fourier Transform. The
packet arrival is modeled by a renewal process with an
exponential distribution of mean1

λ
. We used an arrival rate

of λ = 10000 pkts/sec. The characteristic function of an
exponential distribution is given by:E{ejΩS

}

=
jλ

jλ + Ω
. (6)

Using the two functionsRL(k) andE{ejΩS
}

and Equation
1, one is able to derive numerically the theoretical form of
the PSD for the unsampled signal. The theoretical formula
predicting the packet sampled spectra is given in Eq. 3.

To compare the estimated spectra with the theoretically
predicted, we applied to the synthetic trace a random packet
sampling with different packet sampling rates and derived the
PSD with the Capon estimator described in the appendix.
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Fig. 2 shows the estimated PSD for the synthetic trace at
different sampling rates and compares them with the theoreti-
cal spectra3. It can be seen that with decreasing sampling rate
p, the amplitude of the spectra is reduced and the base level
of the spectra changes. For low sampling rates (p = 0.01),
the spectra totally disappears as it is drowned in the sampling
noise.

C. Impact of Aggregation

Aggregation consists of adding up all packets arriving in
an interval k of length Ξ and deriving a temporal mean.
This translates a packet trace (sampled or not) into a discrete
time series{x̃[k]}. The motivation for aggregation is two-
fold: on one hand practical constraints (as computing power
or needed bandwidth to gather the measurements,etc.) require
data compression; on the other hand the signal gets translated
to the desired granularity of interest. For example, in the
context of anomaly detection short time scale variations (less
than a second) are not really of interest as they could be related
to changes in the number of flows sharing a link or to the time
dynamic of applications; but variabilities in larger time scales
are interesting as they can be related to durable changes such
as attacks or failures in equipment.

Aggregation is equivalent to applying to the Internet traffic
process an integral operatori.e.

XΞ(t) =
1

Ξ

∫ t

t−Ξ

X(s)ds. (7)

followed by a regular temporal time sampling with a period
Ξ resulting a discrete signal̃x[k].

The PSD of a regularly time sampled processSY (Ω) can be
expressed using the following well known sampling formula:

SY (Ω) =
1

∆

k=+∞
∑

k=−∞

SX(Ω − kΩs) (8)

whereΩs = 2π
∆ is the time sampling frequency in rad/sec. The

resulting spectra consists therefore of periodically repeated
copies of the Fourier transform of the unsampled signalX(t)
that are shifted by integer multiples of the time sampling
frequency.

Following the formula for the spectra of regularly time sam-
pled data presented above, and accounting for the rectangular
window applied to obtain the aggregation, the PSD of the
signalXΞ(t) resulting from aggregation applied over a process
X(t) is given by:

SXΞ(Ω) =
1

Ξ

k=+∞
∑

k=−∞

sinc2
(

(Ω − kΩΞ)Ξ

2

)

SX(Ω − kΩΞ)

(9)
where sinc(.) is the sinc function andΩΞ = 2π

Ξ .
Eq. 9 illustrates two effects of aggregation on the spectra

of the processX(t): (i) a linear distortion introduced by the
coefficient sinc2(ΩΞ

2 ); and (ii) a repetition of the PSD of
X(t) modulated by the distortion term at regular intervals
k
Ξ . The linear distortion acts as a non-sharp and non-flat

3The spectra have been rescaled to the same level of energy.

low-pass filter with a 3db cut-off frequency offΞ = 0.44
Ξ .

Consequently, by applying aggregation all frequencies larger
thanfΞ become highly attenuated. Aliasing happens whenSX

has frequency components larger than1
2Ξ . Aliasing occurs here

with attenuated copies of the spectra. However, as the side
lobes are still significant the aliasing effect will be strong, in
particular, when high frequencies with large amplitudes exist.

As packet sampling adds a white noise component (see Eq.
3) to the traffic signal, aliasing is very likely to occur when
aggregating packet sampled traffic; and this aliasing worsens
with lower sampling rates generating higher noise levels.
The resulting aggregated process will have properties thatare
completely different from the initial process, in additionto
the dramatic increase of the noise level and a sharp decrease
of the SNR. Moreover, if the unsampled signal has frequency
components larger than12Ξ aliasing will occur even without
packet sampling. We will illustrate the effect of aggregation
in comparison to our solution in the next section.

III. SOLUTION: LOW-PASSFILTERING

We propose to replace the aggregation block with a specif-
ically designed low-pass filter in order to obtain a better
spectrum estimation. The purpose of this filter is to reduce
the bandwidth of the signal, such that (i) the bandwidth of
interest is still retained and (ii) aliasing is avoided.

A. Impact of Low-pass Filtering

If we assume that the packet sampled signalX̃(t) has a
finite bandwidthB, one can see that iffS = 1

∆ ≥ 2B, the
shifted replicas resulting from time sampling will not overlap
and the resulting discrete PSD will be an exact copy of the
initial PSD. This is indeed a re-expression of the Shannon-
Nyquist theorem, that states that any band-limited signalX(t)
with bandwidth less thanB, can be perfectly reconstructed
from a sampled sequenceX(k∆), k = −∞, . . . , +∞,
under the condition that1∆ ≥ 2B. However, if the sampling
frequency is too small (fS < 2B), the replicas get mixed
and analiasing effect occurs. Aliasing is a major concern
with temporal sampling of signals as it means that the PSD at
frequencyΩ gets garbled with components from frequencies
kΩS −Ω. The classical approach to avoid aliasing is to elimi-
nate high-frequency components that lie outside the[− fS

2 , fS

2 ]
frequency band by applying a low-pass anti-aliasing filter with
bandwidthfS

2 before time sampling.
And this is exactly what we are proposing. The packet

sampled signal is filtered with a low-pass filter with bandwidth
1
2Ξ , and afterwards regular time sampling with a sampling rate
fS > 1

Ξ is applied. The filtering step has three very important
functions: (i) It brings the signal to the relevant granularity of
interest by filtering variations with a time scale smaller than
2Ξ. (ii) It acts as an anti-aliasing filter,i.e., it ensures that the
following time sampling will not result in aliasing. (iii) As the
signal-to-noise ratio depends on the bandwidth as predicted by
Eq. 4, it limits the bandwidth and thus the amount of noise
that will be introduced in the signal.

By applying this method we ensure that the spectra (and
therefore the temporal correlation structure) obtained isexactly
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Fig. 3. Power Spectral Density (PSD) estimated over the aggregated and
low-pass filtered synthetic trace. The theoretical spectraof the unprocessed
signal is added for comparison. The timescale of interest lies between zero
and 120 Hz. The PSD of the aggregated signal clearly shows theimpact of
aliasing, while the PSD of the filtered signal is free of aliasing.

the same as the spectra of the initial signal for frequencies
below 1

2Ξ . In fact, the proposed approach replaces the sinc2

aggregation filter with a better designed low-pass filter that
generates less linear distortion in the passband and higher
attenuation in the stopband.

B. Aggregation vs. Low-pass Filtering

To illustrate the effect of aggregation and low-pass filtering
on the spectra we use again the synthetic trace. In particular,
we have applied an aggregation window with a length of 40
µsec to the synthetic trace, resulting in a cut-off frequencyof
11 kHz. To obtain the same bandwidth for the low-pass filtered
signal, we have designed a filter with a cut-off frequency of
11 kHz, which is followed by a time sampling at 22 kHz.
We show the resulting spectra in Fig. 3. The spectra of the
aggregated signal shows clearly the effect of aliasing. Thepeak
outside the band of interest (at 300 Hz) generates an artifact (a
peak at 52 Hz) inside the band of interest. The spectra of the
low-pass filtered signal, on the other hand, almost perfectly
estimates the theoretical spectra in the band of interest.

In order to compare aggregation and low-pass filtering in the
presence of packet sampling noise, we compute the signal-to-
noise ratio after applying each method to a real-world trace
from the WIDE project. In particular, we compare the SNR
resulting from aggregation with a 1s window (resulting in a
cut-off frequency of 0.44 Hz) with the SNR resulting from
low-pass filtering with a bandwidth of 0.44 Hz and time
sampling with a rate of 1 Hz.

We plot in Fig. 4 the empirical SNR for the aggregated
and the low-pass filtered trace vs. the theoretical SNR for a
low-pass filtered signal given by

SNR =
2ΞE{Z}2

λVar
{

Z
}

∫ 1

4Ξ

− 1

4Ξ

SX(Ω)dΩ (10)

High sampling rates result in high SNR values and are
therefore shown in the right part of the graph. One can see
the very good predictive power of the theoretical formula for
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Fig. 4. Empirical SNR vs. theoretical SNR for different sampling rates (each
point corresponds to a different sampling rate) for an aggregated and a low-
pass filtered real-world packet trace. The empirical SNR of the filtered signal
is close to the theoretical SNR (reference line), while the empirical SNR of the
aggregated signal is significantly lower than the theoretical SNR for sampling
rates smaller than 100%.

the SNR after low-pass filtering and sampling. In particular,
the proportionality of the SNR with p

1−p
is fully validated.

However, what is more instructive is the SNR curve for the
aggregated signal. The SNR calculated after aggregation is
consistently less than the one for low-pass filtering, especially
for low sampling rates and thus small SNR values shown on
the left side of the graph. As the noise after packet samplingis
the same for aggregation and low-pass filtering, the source of
the increased noise level for aggregation is indeed the aliasing
effect.

C. Low-pass Filtering in Practice

In practice, low-pass filtering can be efficiently implemented
in hardware as an analog filter. Therefore, an analog version
of traffic process has to be obtained by applying a digital to
analog converter, and the resulting signal has to be converted
back with an analog to digital converter. However, if we do
not have access to an analog filter, we can still implement the
proposed filter in software by using digital signal processing.
However, the bandwidth of the initial traffic signal is very
large (in the order of several hundreds of megahertz) and the
low-pass filter bandwidth will be very small (in the order of
hundreds of millihertz). Therefore implementing a low-pass
filter with good transition properties in a single step is not
possible. Thus, the digital filter implementation consistsof a
cascade of decimation filters reducing the bandwidth and the
sampling rate in several steps.

The complexity involved with low-pass filtering is indeed
larger than for aggregation. However, the burden of filtering
can be limited by using fewer cascade steps for the decimation
filter, and thus trading off the precision of the low-pass filter
for reduced complexity. We are pushing this discussion to
another paper that will deal with the practical implementation.

IV. I MPACT ON ANOMALY DETECTION

In this section, we illustrate the impact of aggregation vs.
low-pass filtering on anomaly detection. In particular, we show
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Fig. 5. Comparison of the noise variance captured by an autoregressive
(AR) model for a filtered and and aggregated traffic trace as a function of
the packet sampling rate. The variance of the innovation process at the output
of the Kalman Filter (KF) is also shown. The AR model noise variance for
the filtered signal is almost two orders of magnitude smallerthan the model
noise variance of the aggregated signal.

how the aliasing noise affects the entropy reduction step and
the anomaly decision.

A. Entropy Reduction

To illustrate the effect of packet sampling on anomaly
detection, we compare here a normal behavior model derived
from the signal obtained after aggregationx̄[k], and the signal
after low-pass filtering and time sampling̃x[k]. One way to
derive a normal behavior model is to use an autoregressive
(AR) model [12]. An AR model for the signaly[k] is defined
as:

y[k] =
n
∑

i=1

αiy[k − i] + ǫi (11)

whereǫi is a noise term with varianceσ2. Model calibration
consists of choosing the order of the modeln, the coefficient
αi and the noise varianceσ2. It is well known that any process
can be approximated by an AR model with a high enough
order. These parameters can be derived in several ways. We
will use in the forthcoming the Burg estimator to estimate the
coefficientsαi and σ2 [13]. The Burg method uses the esti-
mated autocorrelation to derive these parameters. The order of
the model is chosen by using a Minimum Description Length
criterion trading off the quality improvement resulting from
higher order with the increase in the number of parameters
[11].

We use the WIDE traces for illustration and set the aggre-
gation window to 1s and the filtering bandwidth to 0.44 Hz
(equivalent to the cut-off rate of the aggregation). We obtain
an optimal model with an order 5 to 7 AR model in all cases.
To enable easier comparison we use for all cases an AR model
of order 6.

Let’s first analyze the variance of the random term of the
model. Intuitively, the noise in the signal input to the modeling
phase should be transferred to the model noise, however this
relation is not straightforward and no precise relation can
be obtained. Equation 3 suggests that the amount of noise
resulting from packet sampling will be proportional to1−p

p
.

+

_

+

+
y(k)

e(k)

Kj A

y(k)
^

C

x(k/k)
^

Fig. 7. Block diagram of a Kalman filter.

For small sampling ratesp, the noise becomes proportional to
1
p
.
Fig. 5 depicts the AR model error variance for the aggre-

gated signal and the filtered signal, and the expected error
variance (proportional to the sampling rate1

p
). The figure

shows that the error variance of the filtered signal is close
to the expected error variance at least for sampling rates
larger than 1:10. The error variance for the aggregated signal
on the other hand overestimates the modeling noise variance
by a coefficient of 5. The most striking observation from
Fig. 5 is, however, the huge difference of AR model noise
variance (almost 2 orders of magnitude) for the filtered and
the aggregated traffic signal. We also plot the variance of the
innovation process estimated by the Kalman filter as function
of the packet sampling rate for the filtered and aggregated
signal as we will need this in the following discussion.

The Kalman filter state space model can be stated as
{

x[k + 1|k + 1] = (A − K∞CA)X[k] + K∞y[k]

e[k] = −CAx[k|k] + y[k]

where the input is the observed signaly[k], the output is the
innovation processe[k] and the state vector is the estimate of
the state value. The matricesC, A correspond to the values in
the state space representation of the AR model. The transfer
function of the Kalman filter can be derived from the above
state space representation as

W (z) =
1

1 − CA(zI − A + K∞C)−1K∞

(12)

We show in Fig. 6 the frequency response of the AR model
calibrated over the filtered and aggregated signal for unsam-
pled and sampled traffic. One can observe that the AR model
transfer function for the filtered signal is not very sensitive
to the packet sampling noise. The transfer function obtained
from the aggregated signal seems much more sensitive. Last
but not least, the graph shows that the filtered signal enables
a rich inference of the normal behavior structure, whereas the
aggregated signal results in an almost flat spectra. We also plot
the transfer function of the Kalman filter for both signals. The
figure show clearly the whitening action of the Kalman filter.
The transfer function of the Kalman filter approximates very
well the inverse of the spectra of the calibrated model,i.e.,
whenever the Kalman filter is fed with a signal following the
spectra of the calibrated AR model, the output will exhibit a
flat spectra and will be uncorrelated.

B. Anomaly Decision

The whitening property of the Kalman filter ensures that
the innovation signal at the output is an uncorrelated random
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Fig. 6. Spectra of the autoregressive (AR) model and the transfer function (TF) of the Kalman Filter for two signals: low-pass filtered (left) and aggregated
(right) at two sampling rates 1:1 and 1:100. The AR model calibrated over the filtered signal is clearly less sensitive to the packet sampling than the model
calibrated over the aggregated signal. Further, the filtered signal AR model captures a larger part of the normal behavior structure, while the aggregated AR
model spectra is almost flat.

signal with a known varianceVi(p). This variance is a side
product of the Kalman filtering algorithm and is used to
determine if an observation is normal or not. Let’s assume the
anomaly signala[k] and is applied to the system at time0. One
can expect to see along with the anomalya[k] some normal
traffic n[k] crossing the network. So that the traffic entering
the Kalman filter isa[k]+n[k]. Knowing the transfer function
of the Kalman filter (Eq. 12) one can determine exactly how
the anomaly will present itself at the output of the whitening
filter. From the transfer function, by applying a Z-transform,
one can derive the impulse response of the Kalman filterw[k].
The output resulting from the anomalous part of the signala[k]
is thereforeea[k] = a[k]∗w[k] =

∑k

n=0 a[n − k]w[k]. Due to
the whitening property of the Kalman filter, the signalen[k]
resulting from the normal part is an uncorrelated signal that
can be assimilated to a white noise with a known variance.
This means that when an anomaly is present in the traffic,
we can see at the output of the anomaly detector a signal
e[k] = ea[k] + en[k]. An anomaly can be detected only if
for some value ofk, e[k] > D, where D is the anomaly
detection threshold. To be on conservative ground, we assume
an anomaly signal gets detected when it attains its peak,i.e.,
M(a) + en[k] > D.

Under a gaussian assumption for the normal innovation pro-
cess, 4 the false negative probabilityPMD can be computed
as:

PMD
a = 2 ∗ Q(

M(a) − D
√

Vi(p)
) (13)

where Vi(p) is the variance of the innovation process at a
packet sampling ratep. The coefficient 2 accounts for situa-
tions where the maximal amplitude is negative. If the signal
is non-gaussian we have to replace the complementary inverse
error function Q(.) with the corresponding complementary
inverse function of the distribution of the innovation process.

We stated previously thatVi(p) < C
p

where C is a
constant. Based on Fig. 5 we can setC = 0.1Vi(0.1) as the

4The Kalman filter as well as PCA based methods are defined in thecontext
of a gaussian hypothesis. They can be used in non-gaussian situations but they
will not be anymore optimal.

proportionality assumption holds fromp = 0.1. This gives
C = 5.7 × 10−4 for filtered traffic andC = 1.9 × 10−2 for
aggregated traffic (note the coefficient of 34 between these two
values). We can therefore write the false negative probability
for an anomaly with maximal amplitude after Kalman filtering
M(a) as a function of the sampling ratep and the decision
thresholdD:

PMD
a (p, D) < 2 ∗ Q(

√
p
(M(a) − D)√

C
) (14)

Similarly a false positive occurs when the innovation process
value goes beyond the decision threshold when there is no
anomaly. The probability of such an eventPFA(p) is given
by:

PFA(p, D) < 2 ∗ Q(
√

p
(D)√

C
) (15)

PFA(p, D) does not depend on the anomaly and therefore has
no subscript. These two values are an upper bound that can be
used for design purposes as illustrated later. A ROC curve can
be derived by plotting the points(PFA(D), 1 − PMD

a (p, D))
for varying values of the decision thresholdD.

The derivation presented is related to a single type of
anomalya[k] with maximal amplitudeM(a). In practice one
will see different types of anomalies with different maximal
amplitudes. Let’s assume that the distribution ofM(a) is given
by P (a). Hence, one can expect the overall false negative
probability to be bounded by:

PMD(p, D) <

∫ ∞

a=0

2 ∗ Q(
√

p
(M(a) − D)√

C
)P (a)da (16)

The overall ROC curve consequently contains the points
(PFA(p, D), PMD(p, D)) for different threshold values.
However, derivingP (a) can be very difficult as we need to
have a complete characterization of anomalies. This last point
is still a white spot in the research landscape

V. EVALUATION

The above analysis gives a precise view on the effect of
packet sampling on anomaly detection. Next, we describe how
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Fig. 8. Comparison of the false negative (misdetection) probability for 20
injected synthetic anomalies with the theoretical upper bound for low-pass
filtered and aggregated traffic for different sampling rates. The filtered signal
clearly outperforms the aggregated signal.

to design an appropriate low-pass filter that has a guaranteed
anomaly detection performance at a given sampling rate (that
is acceptable for the capturing devices) and for a given
anomalya[k]. One can use the two equations 14 (or 16 if the
statistics are known) and 15 in order to choose the sampling
ratep and the threshold valueD. However, this choice might
result in a sampling rate that is not acceptable because of router
constraints. In this case, one has to select a lower samplingrate
and reduce the noise introduced into the signal by adapting
the bandwidth of the low-pass filter. This means that we
are introducing a trade-off between the bandwidth of interest
(the low-pass filter bandwidth) and the packet sampling rate.
Anomalies at smaller timescales need higher packet sampling
rates.

A. Synthetic Anomalies

Let’s first validate the formula for the false negative prob-
ability. For this purpose we assume an anomaly that consists
of a pulse with duration 5s with an amplitude equal to
0.1m̄, wherem̄ is the mean traffic value. According to the
frequency response of the Kalman filter given above, we obtain
M(a) = 0.13m̄ for the low-pass filter andM(a) = 0.1m̄ for
aggregation. We injected 20 such anomalies in the normal traf-
fic. Further, let’s choose a threshold equal toD = 2.3∗

√

Vi(p)
as this value gives aPFA(D) = 0.01.

We plot in Fig. 8 the false negative (misdetection) prob-
ability obtained from the trace for aggregation and low-pass
filtering, as well as the theoretical upper bound obtained from
Eq. 14. A particularly important observation is that the false
negative probability is much larger for the aggregated signal
than for the filtered one: all injected anomalies where detected
over the filtered traffic up to a sampling rate of 1:20, whereas
no more than 60% of the anomalies are detected even over the
unsampled aggregated traffic. This was expected as we have
shown that the noise introduced by aggregation is much larger
than the noise introduced by filtering.
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Fig. 9. Comparison of the matching probability obtained over aggregated,
low-pass filtered, and readjusted (decreased bandwidth) low-pass filtered
traffic signal for different sampling rates. The readjustedfiltered signal
achieves the highest matching probabilities.

B. Real Traffic Trace

Finally, we validate the findings of this paper by applying
all the steps (packet sampling, filtering or aggregation, Kalman
filtering and anomaly detection) to a real packet trace. We use
a packet trace from an experiment that launched a distributed
(from 5 different sources) Denial of Service attack in an
operational network. The attacks were generated using the
TFN2K tool and consisted of 18 epochs of 100 secs where
an attack with an increasing intensity is launched. Each attack
is separated by a 300 secs pause period. This experiment was
run in the context of the MetroSec project [7] funded by the
French government. The attack trace can be obtained upon
request from the authors. The nice property of these traces
is that they contain known anomalies. However, the complete
ground truth cannot be known as one is never sure if there was
not an anomaly in the period were no anomaly was detected.

It is noteworthy that the goal of this paper is not to evaluate
an anomaly detection method. If this was our goal we would
have needed indeed to know as precisely as possible the
ground truth. However, the goal of this paper is to evaluate the
effect of packet sampling on anomaly detection,i.e., the main
performance criteria is the matching probability defined asthe
likelihood that an anomaly detected on the non-sampled signal
is also detected in the sampled signal with the same threshold.

We plot in Fig. 9 the matching probability as a function
of the sampling rate for the filtered and aggregated traffic.
The plot shows that the anomaly detection performance is
less sensitive to packet sampling for the filtered signal than
for aggregated signal as the matching probability consistently
reaches a larger value for the filtered signal. This observation
fully validates (at least on this trace) the proposition of this
paper to replace aggregation by low-pass filtering.

To validate the design methodology given above, we have
also plotted the matching probability for the readjusted filtered
signal. This signal is obtained by decreasing the bandwidth
of the low-pass filter by the same coefficient as the packet
sampling rate. The basic bandwidth used for the unsampled
case is 1 Hz, then if the sampling rate is chosen to be



9

1:100, we set the bandwidth of the low-pass filter to 0.01
Hz and so on. By doing this we ensure that the increase
in input noise resulting from lower packet sampling rates is
compensated by a smaller bandwidth. The figure shows that
with this readjustment, one can detect the same anomalies than
with the unsampled signal up to a sampling rate of 1:50. The
performance begins to worsen for larger sampling rate as the
decreasing bandwidth of the low-pass filter begins to eliminate
some anomalies that have a time scale smaller than 100s. This
last observation shows that by using low-pass filtering, we can
attain good anomaly detection performance even with high
sampling rates on the condition that the bandwidth is reduced
accordingly.

VI. RELATED WORK

First and second order network statistics are captured in
today’s networks for a variety of applications such as account-
ing, anomaly detection, or network planning. To cope with the
increasing packet rates, different sampling methods have been
proposed. The two main methods used are systematic sampling
where one out ofN packets is taken, and random sampling
where each packet is taken with a probability of1/N .

One line of previous work has concentrated on measuring
and quantifying the impact of packet sampling on anomaly
detection results. In [2], the authors empirically studiedthe im-
pact of random packet sampling on volume and distributional
anomaly detection metrics. Mai et al. [6] applied a similar
methodology for showing the impact of packet sampling on
a wavelet-based volume anomaly detection system, and two
port scan detection algorithms. Both studies concluded that
in general anomaly detection results degrade whenN is
increased.

A second line of research concerns the question of recon-
structing first and second order statistics of interest fromsam-
pled traffic views. Duffield et al. [4] have shown how to infer
certain first order flow statistics from sampled traffic. Inversion
of the flow length distribution from sampled data, which is
desirable for monitoring changes in the traffic composition,
has also been studied in this context [4], [9], [5].

The only previous work on spectrum estimation from
sampled data is that of Hohn and Veitch [5]. The authors
provide methods that rely on the theory of point processes for
recovering the spectral density of theaggregatedpacket count
process when random packet and random flow sampling is
applied. They conclude that for largerN (e.g., N = 1000)
random flow sampling gives still accurate estimates while
estimation from packet sampled data is highly inaccurate.

We fill the gap between these two lines of research by
studying the impact of packet sampling on the spectral density
of the arrival process from a signal processing theory point
of view. This allows us to quantify the impact of packet
sampling on the spectral density of the arrival process, the
aggregated packet count process, and finally on anomaly
detection. Moreover, we propose a solution that provides a
trade-off between sampling rate and anomaly detection scale.

VII. C ONCLUSION

We have presented an exhaustive discussion on the impact
of data pre-processing, namely packet sampling and temporal
aggregation, on the performance of anomaly detection systems.
We have shown that packet sampling introduces a noise into
the anomaly detection signal. We have further shown that
popular aggregation techniques add aliasing to the signal.

We proposed to replace the aggregation function with a
low-pass filter to prevent the devastating aliasing effects. We
evaluated, both theoretically and practically, the effectof signal
distortion through packet sampling and aggregation/filtering
on the two anomaly detection steps, entropy reduction with a
normal behavior model and the subsequent anomaly decision.
We evaluated our approach with synthetic anomalies and real
traffic traces, and have shown that our filtering solution clearly
outperforms temporal aggregation in terms of false positives
(misdetection rate) and true positives (detection rate).
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