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Rating Network Paths for Locality-Aware Overlay
Construction and Routing

Wei Du, Yongjun Liao, Narisu Tao, Pierre Geurts, Xiaoming Fu and Guy Leduc

Abstract—This paper investigates the rating of network paths,
i.e. acquiring quantized measures of path properties such as
round-trip time and available bandwidth. Comparing to fine-
grained measurements, coarse-grained ratings are appealing in
that they are not only informative but also cheap to obtain.

Motivated by this insight, we firstly address the scalable
acquisition of path ratings by statistical inference. By observing
similarities to recommender systems, we examine the applica-
bility of solutions to recommender system and show that our
inference problem can be solved by a class of matrix factorization
techniques. A technical contribution is an active and progressive
inference framework that not only improves the accuracy by
selectively measuring more informative paths but also speeds
up the convergence for available bandwidth by incorporating its
measurement methodology.

Then, we investigate the usability of rating-based network
measurement and inference in applications. A case study is
performed on whether locality awareness can be achieved for
overlay networks of Pastry and BitTorrent using inferred ratings.
We show that such coarse-grained knowledge can improve the
performance of peer selection and that finer granularities do not
always lead to larger improvements.

Index Terms—rating-based network measurement, network
inference, recommender system, matrix factorization.

I. INTRODUCTION

Network measurement is a fundamental problem in the heart
of the networking research. Over the years, various tools have
been developed to acquire path properties such as round-trip
time (RTT), available bandwidth (ABW) and packet loss rate,
etc [1]. As in most scientific disciplines, the common sense
in the field is that a measurement should be made as fine-
grained and accurate as possible. This is considered necessary
to enable quantitative analysis of network performance.

However, recent advances in emerging Internet services
have created numerous situations where coarse-grained mea-
surements can be leveraged and may even be preferred. A
typical example is Peer-to-Peer (P2P) Overlay Networks [2]
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where a common design is to use Intelligent Peer Selection to
improve traffic locality [3], i.e. encourage more communica-
tions between “nearby” nodes, with connections of small RTT
or high ABW. The objective is thus to find “good-enough”
paths for overlay construction and routing, which can be well
served by using coarse-grained network measurement.

Motivated by this insight, this paper investigates the rating
of network paths, i.e. acquiring quantized path properties
represented by ordinal numbers of 1, 2, 3, . . ., with larger
value indicating better performance. Although coarse-grained,
ordinal ratings are appealing for the following reasons:

• Ratings carry sufficient information that already fulfills
the requirements of many applications.

• Ratings are rough measures that are cheaper to obtain
than exact property values.

• Ratings can be encoded in a few bits, saving storage and
transmission costs.

A practical issue of rating-based network measurement is
the efficient acquisition on large networks. While cheap for a
single path, it is still infeasible to rate all paths in a network by
active probing due to the quadratic complexity. The scalability
issue has been successfully addressed by statistical inference
that measures a few paths and predicts the properties of the
other paths where no direct measurements are made [4]–[12].
Inspired by these studies, a particular focus of this paper is
network inference of ratings: how ratings of network paths
can be accurately predicted. An interesting observation is that
the inference problem resembles the problem of recommender
systems which studies the prediction of preferences of users
to items [13]. If we consider a path property as a “friendship”
measure between end nodes, then intelligent peer selection
can be viewed as a “friend” recommendation task. This
seemingly trivial connection has the great benefit to leverage
the rapid progresses in machine learning and investigate the
applicability of various solutions to recommender systems for
network inference. Our studies show that a class of matrix
factorization techniques are suitable for network inference and
achieved good results that are known to be acceptable for
recommendation tasks.

Furthermore, we also observe an important difference be-
tween the two inference problems. Unlike recommender sys-
tems where users rate items voluntarily, we have more control
over data acquisition in network inference, i.e. nodes may
actively select a few other nodes to probe. This insight enables
the design of an active inference framework that, under a given
measurement budget, improves prediction accuracy by selec-
tively measuring those more informative paths. In addition, a
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progressive inference framework is designed for a particular
path property, namely ABW, by utilizing the principle of self-
induced congestion [1] which has been widely incorporated
in popular ABW measurement tools such as Pathload and
Pathchirp [14], [15]. This allows us to perform inference using
partial rating information (i.e., the rating of a path is larger
or smaller than a value), which significantly speeds up the
convergence of the inference.

Another practical issue on rating-based network measure-
ment is the usability in applications. Two questions need to
be answered, the first of which is whether the inference of
ratings is accurate enough to be exploited by applications and
the second of which is how to determine a proper granularity.
While a coarser granularity means rougher and thus cheaper
measurement, it also means more information losses which
may hurt the performance of applications. Answers to these
questions are critical in the design of system architecture,
particularly for P2P applications where the knowledge of
locality plays an important role [3], [16], [17].

Thus, we answer these two questions by investigating quan-
titatively the impacts of both the inaccuracy of the inference
and the granularity. For the case study, we consider locality-
aware overlay construction and routing where locality refers
to the proximity between network nodes according to some
path property such as RTT or ABW. More specifically, we
performed the study on Pastry [16] and BitTorrent [17], which
are typical structured and unstructured overlay networks and
are known to enjoy the property of locality awareness, and
evaluated the performance of overlay construction and routing,
with the knowledge of locality obtained via network inference
of ratings. Our studies show that while the knowledge of
inferred ratings can improve the performance of peer selection,
finer granularities do not always lead to larger improvements.
For example, our simulations on various datasets show that
the performance of peer selection improves very little when
the rating level reaches 24.

Thus, this paper makes the following contributions:
• We investigate the rating-based network measurement

that acquires quantized path properties represented by
ordinal numbers. Such representation not only is in-
formative but also reduces measurement, storage and
transmission costs.

• We investigate the scalable acquisition of ratings by
network inference. We highlight similarities between net-
work inference and recommender systems and examine
the applicability of solutions from this latter domain
to network inference. In particular, we show that our
inference problem can be solved by a class of matrix
factorization techniques.

• We design the active and progressive inference schemes
that improve not only the prediction accuracy but also the
convergence speed.

• We perform a case study on locality-aware overlay con-
struction and routing to demonstrate the usability of
rating-based network measurement and inference in P2P
applications.

The rest of the paper is organized as follows. Section II
introduces related work. Section III describes the properties

and the rating of network paths. Section IV introduces network
inference by a class of matrix factorization techniques. Section
V describes an active and progressive inference framework.
Section VI introduces the case study on locality-aware overlay
construction and routing. Section VII gives conclusions and
future work.

II. RELATED WORK

A. Inference of Network Path Properties

Network inference has been studied for over a decade,
and numerous approaches have been developed. For example,
GNP [4] and Vivaldi [5] solved the inference of RTT by
Euclidean embedding, while tomography-based approaches
such as TOM [6], Network Kriging [7] and NetQuest [8]
used linear algebraic methods and the routing tables to infer
additive properties such as RTT and packet loss rate. Although
interesting in different aspects, these approaches are limited
only to certain path properties and/or rely on the routing
information of the network which is expensive to obtain for
applications.

To overcome these constraints, a recent advance was made
in [10], [12] that formulated network inference as a matrix
completion problem. A class of algorithms called DMFSGD
was proposed and showed improved accuracy and flexibility
in dealing with various properties including the non-additive
ABW. Matrix completion is suitable for network inference
because it exploits the correlations between measurements of
different paths [6], [7], [12], [18] and has also been used for
other problems such as network traffic estimation [19]–[21].

All above-mentioned work focused on the prediction of
exact measurement values, except [10] which classified path
properties into binary classes of either “good” or “bad”. This
paper goes further and is the first to investigate rating-based
network measurement and inference. Ratings are measures in
between property values and binary classes: on the one hand,
they are more informative than binary classes; on the other
hand, they are advantageous over property values due to the
coarse-grained measurement.

B. Locality-Aware Overlay Networks

There are two classes of overlay networks: structured and
unstructured [2]. The former places content deterministically
at specified locations according to the Distributed Hash Table
(DHT) which makes subsequent queries efficient. The latter
organizes peers more randomly and uses flooding or random
walks to query content. Examples of structured systems are
Kademlia [22], Chord [23] and Pastry [16], and those of un-
structured are Freenet [24], Gnutella [25] and BitTorrent [17].

For both structured and unstructured overlay networks, a
desired property is locality-awareness which makes commu-
nications as local as possible. Such a property is important
for P2P applications because it can reduce cross-domain
traffic, avoid congestions and improve service performance
[3]. It is recognized that locality-awareness can be achieved
via intelligent peer selection whereby dense connections are
enforced between nodes that are well connected to each
other, i.e., short in terms of RTT or wide in terms of ABW.
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While the effectiveness of intelligent peer selection has been
repeatedly justified [3], [26], [27], this paper is the first to
study whether locality-awareness can be achieved, in both
structured and unstructured overlay networks, using rough
and inaccurate knowledge of network proximity obtained via
network inference of ratings.

III. PROPERTIES AND RATING OF NETWORK PATHS

A. Properties of Network Paths

While ultimately the performance of a network path should
be judged by the quality of service (QoS) perceived by end
users, it is important to define an objective metric that is
directly measurable without user interventions. Among the
commonly-used path properties mentioned earlier, this paper
only discusses round-trip time (RTT) and available bandwidth
(ABW) due to the availability of such data and the relatively
rare occurrence of packets losses in the Internet [1].

1) Round-Trip Time (RTT): The RTT is one of the oldest
and most commonly-used network measurements due partially
to its ease of acquisition by using ping with little measurement
overhead, i.e., few ICMP echo request and response packets
between the sender and the target node. Although the one-way
forward and reverse delays are not exactly the same due e.g.
to the routing policies, the RTTs between two network nodes
can be treated as symmetric.

2) Available Bandwidth (ABW): The ABW is the remaining
capacity of the bottleneck link on a path. Many comparative
studies have shown that tools based on self-induced congestion
are generally more accurate [1], [28]. The principle states
that if the probing rate exceeds the available bandwidth over
the path, then the probe packets become queued at some
router, resulting in an increased transfer time. The ABW can
then be estimated as the minimum probing rate that creates
congestions or queuing delays. To this end, pathload [14] sends
trains of UDP packets at a constant rate and adjusts the rate
from train to train until congestions are observed at the target
node, while pathchirp [15] reduces the probe traffic by varying
the probe rate within a train exponentially. The ideas of the
two tools are illustrated in Figure 1.

time

ra
te

ABW

(a) Pathload

time

probe UDP train

T T/γ

(b) Pathchirp

Fig. 1. Two popular ABW measurement tools. In (a), Pathload sends UDP
trains (blue dots) at a constant rate, and increases the probing rate if no
congestion is observed and decreases otherwise, until convergence to the ABW
(dashed line). In (b), Pathchirp varies the probing rate within a train (blue
rectangles) exponentially, i.e., the packets in a train are spaced exponentially.

Comparing to the RTT, the ABW measurement is much
more costly and less accurate. For example, many studies
revealed the pitfalls and the uncertainties of the ABW mea-
surement [28]–[30]. In this paper, we ignore these measure-
ment issues and investigate how network inference can be

performed1 for ABW using a publicly available dataset [31] in
which the measurements were acquired by pathchirp, a fairly
accurate and widely-used tool [28]. In contrast to the RTT,
the ABW is asymmetric and its measurement is inferred at
the target node.

B. Rating of Network Paths

Generally, ratings can be acquired by vector quantization
that partitions the range of the path property into R bins
using R − 1 thresholds, denoted by τ = {τ1, . . . , τR−1},
and determines to which bins property values belong, as
illustrated in Figure 2. The thresholds can be chosen evenly
or unevenly according to the data distribution or the require-
ments of applications. For example, Google TV requires a
broadband speed of 2.5Mbps or more for streaming movies
and 10Mbps for High Definition contents [32]. Accordingly,
τ = {2.5Mbps, 10Mbps} can be defined for ABW to separate
paths of rating 1, 2 and 3.

5 4 3 2 1 RTT

100ms 200ms 300ms 400ms

(a) round-trip time

1 2 3 4 5 ABW

25Mbps 50Mbps 75Mbps 100Mbps

(b) available bandwidth

Fig. 2. Rating by quantization. The thresholds are chosen as an example.

Rating by quantization is directly applicable to RTTs whose
measurements are cheap. For the ABW, it is preferable to
directly obtain the rating measures without the explicit acqui-
sition of the values in order to reduce measurement overhead.
We will show how this is possible by utilizing the principle
of self-induced congestion in Section V-B. In general, as
data acquisition undergoes the accuracy-versus-cost dilemma,
stating that accuracy always comes at a cost, coarse-grained
measurements are always cheaper to obtain than fine-grained
ones. The advantage of the low measurement cost holds
particularly for ABW whose measurement is costly.

Note that when R = 2, rating degenerates to binary
classification of network paths which was studied in [10].
When R is very large, rating approaches the measurement of
property values, which was studied in [12]. Thus, R results
from a trade-off between the granularity and the measurement
costs. A larger R means finer granularity but at the cost of
more measurement overheads, and vice versa. Nevertheless,
we will fix R = 5 in Section IV where we examine the
applicability of solutions to recommender systems. Such a
choice is natural because it corresponds to the commonly-
used 5-star rating system which categorizes performance into
5 discrete levels of “very poor”, “poor”, “ordinary”, “good”
and “very good” quality . We will study the impact of different
choices of R in Section VI.

1Strictly speaking, we do not infer the property of a path. Instead, we infer
the property value that should have been obtained by some measurement tool.
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(a) A network of 8 nodes.
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(b) Node 3 probes node 1, 2, 6 and 8.
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(c) Node 5 probes node 2, 4, 7 and 8.
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(d) A matrix with some missing entries is formed.

Fig. 3. A matrix completion view of network inference. In (d), the blue entries are measured path properties and the green ones are missing. Note that the
diagonal entries are empty as they represent the performance of the path from each node to itself which carries no information.

IV. NETWORK INFERENCE OF RATINGS

This section describes the scalable acquisition of ratings on
large networks by statistical inference.

A. Problem Statement

Formally, the inference problem is stated as follows. Con-
sider a network of n end nodes, and define a path to be a
routing path between a pair of end nodes. There are O(n2)
paths in the network, and we wish to monitor a small subset
of paths so that the performance of all other paths can be
estimated. Note that here we seek to infer ratings, instead of
values, of path properties. Besides reducing the measurement
overheads, another motivation of network inference is that
we can estimate the properties of those paths which are not
measurable due e.g. to the lack of experimental controls.

This inference problem has a matrix completion form where
a partially observed matrix is to be completed [33]. In this
context, a matrix, denoted by X , is constructed, with its entry
xij being the rating of the path from node i to node j.
Each node randomly probes a few other nodes and measures
the ratings of the paths to them. The measurements are put
in the corresponding entries of X , and the missing entries
are the ratings of those unmeasured paths and need to be
estimated, illustrated in Figure 3. Note that X is a square
matrix when it contains the performance of all pairwise paths
in a network. However, for situations where one set of nodes
in a network probe another set of nodes in the same or a
different network, X becomes non-square. Such situations
arise in content distribution networks (CDNs) where a set of
users probe a set of servers [34].

In order for network inference to be feasible, network
measurements on different paths have to be correlated with
or dependent on each other. Otherwise, the inference would
be impossible or suffer from large errors, regardless the
inference schemes used. The correlations between network
measurements exist, because Internet paths with nearby end
nodes often overlap or share bottleneck links due to the simple
topology of the Internet core. The redundancy of link usage
across paths causes the performance of many paths to be
correlated [6]–[8]. For example, the congestion at a certain
link causes the delays of all paths that traverse this link to
increase jointly. A direct consequence of such correlations is
that the related performance matrix occurs to have a low-rank
characteristic [12], [18] which further enables the inference
problem to be solved by matrix factorization techniques,
shown in the following sections. The low-rank characteristic
of performance matrices of RTT and ABW is illustrated by
the spectral plots in Figure 4. It can be seen that the singular
values of these matrices decrease fast, which is an empirical
justification of the low-rank phenomenon.

B. Connections to Recommender Systems

The problem of network inference bears strong similari-
ties to the problem of recommender systems which predicts
the preference of users to items such as music, books, or
movies [13], [36]. Table I shows an example of a recommender
system. Consider that network nodes are users and that each
node treats other nodes as items or “friends”. The performance
of a network path is then actually a “friendship” measure of
how one end node would like to contact the other end node
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Fig. 4. The singular values of a 2255× 2255 RTT matrix, extracted from
the Meridian dataset [35], and a 201× 201 ABW matrix, extracted from the
HP-S3 dataset [31], and of their corresponding rating matrices. The rating
matrices are obtained by thresholding the measurement matrices with τ =
{20%, 40%, 60%, 80%} percentiles of each dataset. The singular values are
normalized so that the largest ones equal 1.

of the path. In particular, the task of intelligent peer selection
can be viewed as a “friend” recommendation task. Guided by
this insight the rapid advances made for recommender systems
can be applied to our inference problem.

TABLE I
AN EXAMPLE OF A RECOMMENDER SYSTEM.

item1 item2 item3 item4 item5 item6
user1 5 3 4 1 ? ?
user2 5 3 4 1 5 2
user3 5 ? 4 1 5 3
user4 1 3 2 5 1 4
user5 4 ? 4 4 4 ?

In particular, research on recommender systems was largely
motivated by the Netflix prize which was an open competition
initiated in 2006 for algorithms that predict the preference,
quantized by the 5-star rating system, of users to movies [37].
A grand prize of one million dollar was to be given to the
first algorithm that improves the accuracy of Netflix’s own
algorithm cinematch by 10%. The prize had attracted a lot of
efforts and attempts before it was given to the BellKor’s Prag-
matic Chaos team in 2009 which achieved an improvement of
10.21%. In what follows, the prize-winning solution is called
BPC. Specifically, BPC integrated two classes of techniques
based on neighborhood models and on matrix factorization.
Neighborhood models exploit the similarities between users
and between items. For example, two users are considered
similar if they rate a set of items similarly. Meanwhile, two
items are considered similar if they are given similar ratings
by a set of users. Although interesting, neighborhood models
are infeasible for network inference, because, to compute the
similarities between network nodes, they must probe a number
of common nodes, which is impossible when the nodes being
probed are randomly selected2. Thus, we focus below on the
matrix factorization models in BPC.

2However, it is possible to deploy some landmark nodes in the network
for other nodes to probe. Thus, each node knows its performance information
to/from the common landmarks. In such situations, the neighborhood models
become applicable and are interesting to study, which is left as future work.

X̂

uiv
T
j = x̂ij ≈ xij

X≈
x̂ij xij

U
ui

V T

vTj

Fig. 5. Matrix factorization.

C. Matrix Factorization

Matrix factorization (MF) exploits the low-rank nature of
matrices of real-world data. Mathematically, a n by n matrix
of rank r, where r � n, has only r non-zero singular values
and it can be factorized as

X = UV T , (1)

where U and V are matrices of size n × r. In practice, due
to data noise, X is often full-rank but with a rank r dominant
component. That is, X has only r significant singular values
and the other ones are negligible. In this case, a rank-r matrix
X̂ can be found that approximates X with high accuracy, i.e.,

X ≈ X̂ = UV T . (2)

MF can be used for solving the problem of matrix comple-
tion, which generally minimizes an objective function of the
following form:

min
∑
ij∈Ω

l(xij , uiv
T
j ), (3)

where Ω is the set of observed entries, xij is the ijth entry
of X , and ui and vj are the ith and jth row of U and of V
respectively. l is a loss function that penalizes the difference
between the two inputs. In words, we search for (U, V ) so
that X̂ = UV T best approximates X at the observed entries
in Ω. The unknown entries in X are predicted by

x̂ij = uiv
T
j , for ij /∈ Ω. (4)

Note that x̂ij is real-valued and has to be rounded to the closest
integer in the range of {1, R} for ordinal rating. Figure 5
illustrates MF for matrix completion.

Below, we introduce various MF models that were inte-
grated in BPC including RMF, MMMF and NMF.

1) RMF: Regularized matrix factorization (RMF) [13]
adopts the widely-used square loss function and solves

min
∑
ij∈Ω

(xij − uivTj )2 + λ

n∑
i=1

(uiu
T
i + viv

T
i ). (5)

The second term is the regularization which restricts the
norm of U and V so as to prevent overfitting, and λ is the
regularization coefficient.
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2) MMMF: Max-margin matrix factorization (MMMF)
solves the inference problem by ordinal regression [38] which
relates the real-valued estimate x̂ij to the ordinal rating xij
by using R− 1 thresholds {θ1, . . . , θR−1}. More specifically,
MMMF requires the following constraint to be satisfied for
each xij , ij ∈ Ω,

θc−1 < x̂ij = uiv
T
j 6 θc, for xij = c, 1 6 c 6 R. (6)

For simplicity of notation θ0 = −∞ and θR = +∞. In
words, the value of x̂ij does not matter, as long as it falls
in the range of {θc−1, θc} for xij = c, 1 6 c 6 R. Here we
set the thresholds as {1.5, 2.5, 3.5, 4.5} for R = 5. Thus, the
constraint in eq. 6 means that, for example, if xij = 2, then
it is required that 1.5 < x̂ij < 2.5 so that x̂ij will be rounded
to 2. Whether x̂ij is 2, 2.2 or 1.6 makes no difference.

Thus, we penalize the violation of the constraint in eq. 6
for each xij and minimize the following objective function

min
∑
ij∈Ω

R−1∑
c=1

l(T cij , θc − uivTj ) + λ

n∑
i=1

(uiu
T
i + viv

T
i ), (7)

where T cij = 1 if xij > c and −1 otherwise. Essentially,
the objective function in eq. 7 consists of R − 1 binary
classification losses, each of which compares an estimate
x̂ij with a threshold θc in {θ1, . . . , θR−1}. For example, for
xij = 2, it is required that x̂ij > 1.5 and x̂ij < 2.5, x̂ij < 3.5,
x̂ij < 4.5. Each violation of these four constraints is penalized
by l(T cij , θc − uivTj ), with

T cij =

{
−1 for c = 1

1 for 2 6 c 6 4
(8)

indicating the correct sign of (θc − uivTj ).
Note that l in eq. 7 can be any classification loss function,

among which the smooth hinge loss function is used [38],
defined as

l(x, x̂) =

 0 if xx̂ > 1
1
2 (1− xx̂)2 if 0 < xx̂ < 1

1
2 − xx̂ if xx̂ 6 0

(9)

3) NMF: Non-negative matrix factorization (NMF) [39]
incorporates an additional constraint that all entries in U and
V have to be non-negative so as to ensure the non-negativity
of X̂ . Besides, NMF uses the divergence as the loss function,
defined as

D(X||X̂) =
∑
ij∈Ω

(xij log
xij
x̂ij
− xij + x̂ij). (10)

Thus, NMF solves

minD(X||UV T ) + λ

n∑
i=1

(uiu
T
i + viv

T
i ), s.t. (U, V ) > 0.

(11)
4) MF Ensembles: Instead of using one of these MF

models, BPC integrated all of them in an ensemble frame-
work, which is the root of its success. The idea is to learn
multiple predictors simultaneously, by using different MF
models (RMF, MMMF and NMF) and by setting different
parameters for each MF model, and combines their outputs,
by voting or averaging, for prediction [40], [41]. Intuitively,

the power of ensemble methods comes from the “wisdom of
the crowd”, which says that a large group’s aggregated answer
to a question is generally found to be as good as, and often
better than, the answer given by any of the individuals within
the group [42].

Besides improving accuracy, ensemble models allow to
compute the variance of each prediction, by computing the
variance of the predictions by different predictors. Variance
indicates the uncertainty of the prediction: large variance
means that different predictors disagree with each other and
we are thus less certain about the combined prediction3. Such
information can be exploited in e.g. intelligent peer selection
so that we can choose, among nodes with high ratings, those
with small variance as they are more certain. Moreover, it
further enables the design of an active inference framework,
which will be introduced in Section V.

D. MF for Network Inference

1) Inference By Stochastic Gradient Descent: We adopted
Stochastic Gradient Descent (SGD) for solving all MF models.
In short, we pick xij in Ω randomly and update ui and vj
by gradient descent to reduce the difference between xij and
uiv

T
j . SGD is particularly suitable for network inference, be-

cause measurements can be acquired on demand and processed
locally at each node. We refer the interested readers to [10],
[12] for the details of the inference by SGD.

2) Neighbor Selection: We also adopted the common ar-
chitecture that each node randomly selects k nodes to probe,
called neighbors in the sequel. That is, each node measures
the properties of the paths from itself to the k neighbors and
predicts the other paths by using MF-based inference schemes.

The choice of k is the result of a trade-off between accuracy
and measurement overhead. On one hand, increasing k always
improves accuracy as we measure more and infer less. On the
other hand, the more we measure, the higher the overhead is.
Thus, we vary k for networks of different sizes so as to control
the number of paths being monitored to be a certain percentage
of the total number of paths in a network. In particular, we
require k to be no smaller than 10 so that a certain amount of
information about the performance at each node is guaranteed.
This leads to less than 5% of available measurements for a
network of about two hundred nodes, which is the smallest
dataset we used in the paper. For large networks of a few
thousand nodes, we increase k so that about 1% of the paths
are monitored. As the largest dataset we used in this paper has
less than 5000 nodes, k is no larger than 50. We consider that
such setting of k leads to sparse available measurements that
is affordable for large networks.

3) Rank r: The rank r is an important parameter and can
only be determined empirically. On the one hand, r has to be
large enough so that the dominant components in X are kept.
On the other hand, a higher-rank matrix has less redundancies
and requires more data to recover, increasing measurement

3While we build our confidence on the variance of a prediction, it does not
mean that smaller variance leads to better accuracy. Instead, it means that the
combined prediction makes more sense if the variance is small, i.e. if different
predictors agree with each other.
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overheads. Our experiments show that empirically, r = 10 is
a good choice, given the sparse available measurements.

E. Comparison of Different MF Models

This section compares different MF models on our network
inference problem. In the evaluations, we set R = 5, which
was also used in the Netflix prize.

The comparison was then performed on the following
publicly available datasets:
• Harvard contains dynamic RTT measurements, with

timestamps, between 226 Azureus clients deployed on
PlanetLab [43];

• Meridian contains static RTT measurements between
2500 network nodes obtained from the Meridian
project [35];

• HP-S3 contains static ABW measurements between 231
PlanetLab nodes [31].

• YouTube contains static RTT measurements from 441
PlanetLab nodes to 4816 YouTube servers [34].

In the simulations, the static measurements in Meridian, HP-S3
and YouTube are used in random order, whereas the dynamic
measurements in Harvard are used in time order according to
the timestamp of each measurement.

We adopted the evaluation criterion, Root Mean Square
Error (RMSE), given by

RMSE =

√∑n
i=1(xi − x̂i)2

n
. (12)

which was used in the Netflix prize. As RMSE is the average
estimation error, the smaller it is, the better.

1) Obtaining Ratings: The first step is to obtain ratings on
a scale of {1, 5} from the raw measurements. To this end, the
range of a path property is partitioned by the rating threshold
τ = {τ1, . . . , τ4}. τ is set by two strategies:
• Strategy 1: set τ by the {20%, 40%, 60%, 80%} per-

centiles of each dataset.
– Harvard: τ = {48.8, 92.2, 177.2, 280.3}ms
– Meridian: τ = {31.6, 47.3, 68.6, 97.9}ms
– HP-S3: τ = {12.7, 34.5, 48.8, 77.9}Mbps
– YouTube: τ = {38.1, 91.1, 131.3, 192.4}ms

• Strategy 2: partition evenly the range between 0 and a
large value manually selected for each dataset.

– Harvard: τ = {75, 150, 225, 300}ms
– Meridian: τ = {25, 50, 75, 100}ms
– HP-S3: τ = {20, 40, 60, 80}Mbps
– YouTube: τ = {50, 100, 150, 200}ms

2) Results: Throughout the paper, the MF parameters are
set as follows: for RMF, MMMF and NMF, the regularization
coefficient λ = 0.1 and the rank r = 10. For MF ensembles,
we generated for each MF model (RMF, MMMF and NMF)
6 predictors using different parameters, i.e. r ranges from 10
to 100 and λ ranges from 0.01 to 1, as described in [41].
For the neighbor number, k = 10 for Harvard of 226 nodes,
leading to about 4.42% available measurements; k = 32 for
Meridian of 2500 nodes, leading to about 1.28% available
measurements; k = 10 for HP-S3 of 231 nodes, leading to

about 4.33% available measurements; k = 50 for YouTube of
4816 servers, leading to about 1.04% available measurements.
Thus, we collect k measurements at each node and perform the
inference using different MF models. The evaluation was done
by comparing the inferred ratings of those unmeasured paths
with their true ratings, calculated by RMSE defined above.

Table II shows the RMSEs achieved by different MF models
and on different datasets. We can see that while RMF generally
outperforms MMMF and NMF, MF ensembles perform the
best at the cost of more computational overheads due to the
maintenance of multiple MF predictors. Note that all MF
models achieved fairly accurate results with the RMSE less
than 1. In comparison, for the dataset in the Netflix prize,
the RMSE achieved by the Netflix’s cinematch algorithm is
0.9525 and that by BPC is 0.8567 [37]. While the RMSEs on
different datasets are not comparable, it shows that in practice,
the prediction with an accuracy of the RMSE less than 1
for ratings on a scale of {1, 5} is already accurate enough
to be used for recommendation tasks. Note that from Table
II, it appears that Strategy 2 which partitions the range of
the property evenly produced smaller RMSEs than Strategy 1
which set τ by certain percentiles of the data. However, the
RMSEs by different strategies are not comparable, because the
evaluations were performed on different rating data generated
by different strategies. Nevertheless, Strategy 2 may create
unbalanced portions of ratings. For example, we may have no
path of rating 1 but a lot of paths of rating 2, which will
never occur for Strategy 1. For this reason, Strategy 1 is used
by default in the rest of the paper.

TABLE II
RMSE ON DIFFERENT DATASETS.

τ : Strategy 1 Harvard Meridian HP-S3 YouTube
RMF 0.934 0.831 0.675 0.923

MMMF 0.969 0.863 0.686 0.957
NMF 0.977 0.904 0.682 0.969

MF Ensembles 0.920 0.821 0.661 0.901
τ : Strategy 2 Harvard Meridian HP-S3 YouTube

RMF 0.920 0.776 0.669 0.910
MMMF 0.919 0.810 0.670 0.944

NMF 0.932 0.829 0.674 0.961
MF Ensembles 0.904 0.766 0.653 0.873

Overall, RMF is lightweight and suits well for online
deployment in P2P applications, and is thus used in Section
VI for the case study on overlay construction and routing.
Table III shows the confusion matrices achieved by RMF on
the four datasets. In these matrices, each column represents
the predicted ratings, while each row represents the actual
ratings. Thus, the diagonal entries represent the percentage of
the correct prediction, and the off-diagonal entries represent
the percentage of “confusions” or mis-ratings. For example,
the entry at (2, 2) represents the percentage of the rating-2
paths which are correctly predicted as rating-2, and the entry at
(2, 3) represents the percentage of the rating-2 paths which are
wrongly predicted as rating-3, i.e. the confusions from rating-
2 to rating-3. It can be seen that while there are mis-ratings,
most of them have a small error of |xij − x̂ij | = 1, marked
as shaded entries in the confusion matrices in Table III. This
means that the mis-ratings are under control. For example, a



DU et al.: RATING NETWORK PATHS FOR LOCALITY-AWARE OVERLAY CONSTRUCTION AND ROUTING 8

rating-5 path may be wrongly predicted as 4, but seldom as
3, 2 or 1, since the entries at (5, 3), (5, 2) and (5, 1) in all
confusion matrices are small.

TABLE III
CONFUSION MATRICES.

Harvard Predicted
1 2 3 4 5

Actual

1 68% 28% 2% 1% 1%
2 18% 60% 20% 1% 1%
3 3% 13% 66% 17% 1%
4 3% 4% 16% 67% 10%
5 3% 3% 5% 43% 46%

Meridian Predicted
1 2 3 4 5

Actual

1 78% 18% 3% 1% 0%
2 8% 59% 30% 3% 0%
3 1% 18% 60% 20% 1%
4 1% 3% 33% 59% 4%
5 1% 1% 12% 59% 27%

HP-S3 Predicted
1 2 3 4 5

Actual

1 92% 6% 1% 1% 0%
2 11% 65% 22% 2% 0%
3 1% 20% 68% 11% 0%
4 0% 3% 33% 58% 6%
5 0% 1% 10% 55% 34%

YouTube Predicted
1 2 3 4 5

Actual

1 80% 17% 1% 1% 1%
2 13% 66% 20% 1% 0%
3 2% 13% 69% 15% 0%
4 3% 8% 33% 52% 4%
5 2% 7% 12% 46% 32%

Note that we also evaluated another matrix completion
method, namely LMaFit4, which was used in [19] for traffic
matrix completion and found that it performed much worse
than the MFs used in this paper. For example, the RMSE
by LMaFit on Meridian, HP-S3 and YouTube are 1.357,
1.139 and 1.422 respectively. Note also that many general
matrix completion methods including LMaFit take as input an
incomplete matrix and make updates on the entire matrix. This
means that they cannot process the dynamic measurements
in the Harvard dataset, nor can they be decentralized. It is
however worth mentioning that LMaFit runs much faster than
the MFs based on SGD.

3) Observations: Our experiments reveal a useful effect of
ordinal rating. In practice, MF is known to be sensitive to
outliers such as those unusually large and small values in the
datasets. However, as ratings are quantized measures, mea-
surement outliers are naturally handled by truncating the large
and small property values to 1 and R. A direct consequence
is that MF becomes insensitive to parameter settings, as the
inputs are always in a relatively small and fixed range.

In the experiments, we observed that there exist nodes which
have a poor rating with all their k neighbors. The likely
reason is that those nodes have a poor access link, i.e. the
link by which a node is connected to the Internet core is
the bottleneck, which causes all connected paths to perform
poorly. Thus, we calculate the mean rating and the standard
deviation of the measured paths associated with each node,

4The source code is downloaded from http://lmafit.blogs.rice.edu/.

denoted by µi and σi. If σi is small, we do not consider that
node i provides useful information about the performance of
the network, and will simply predict the ratings of all paths of
node i as µi. In our datasets, the non-informative nodes are
rare (i.e. no more than 10 in each dataset), and thus the “mean
rating” trick improved the accuracy only slightly. However,
we incorporate it to detect non-informative nodes so that they
won’t pose a problem in any case.

4) Discussions on Scalability: The MF models have proved
to work well for recommender systems on extremely large
matrices such as the one in the Netflix prize. Thus, there
is no scalability issue when running MFs on performance
matrices constructed on networks even with millions of nodes.
However, two practical questions need to be answered when
deploying MFs on real, large networks:
• How many measurements are required to make predic-

tions with a decent accuracy, i.e., an RMSE at least
smaller than 1?

• How fast do MFs run on such a large matrix?
Regarding the first question, a theory in matrix completion
states that a n × n matrix of rank r can be exactly or
accurately recovered, with high probability, from as few as
O(nrlog(n)) randomly sampled entries [33]. This means that
each node would have to probe O(rlog(n)) neighbors, which
scales fairly well in theory. Nevertheless, we are interested
in evaluating whether such a bound holds or is required for
MF-based network inference on large networks. Regarding
the second question, it is known that MFs based on SGD
are computationally efficient, as SGD involves only vector
operations [10], [12], and empirically converge fast for large
matrices, as demonstrated in BPC. We leave the study of these
issues as future work, because it would require really large-
scale network measurement data.

V. ACTIVE AND PROGRESSIVE INFERENCE

A. Active Inference

Despite the strong similarities, there is one important dif-
ference between network inference and recommender systems:
unlike recommender systems where users rate items voluntar-
ily, here we have more control over data acquisition because
network nodes may actively select a few other nodes to probe.
This insight enables to design an active sampling scheme that
selectively measures a set of paths so that the inference of the
other unmeasured paths is more accurate.

The key is to find which paths are more informative,
which is difficult without additional knowledge such as the
topology and routing of the network. However, we can exploit
the uncertainty of a prediction, measured by the variance.
Intuitively, if we are not certain about a prediction, measuring
the path is probably the simplest and the best way to reduce
this uncertainty. In our problem, MF ensembles allow us
to compute the variance of each prediction, by computing
the variance of the predictions by different MF predictors,
as mentioned in Section IV-C4. Thus, we incorporate an
uncertainty sampling strategy [44] that selects those paths of
which our inference is the least certain, i.e. with large variance.
To this end, we perform active inference in three steps.
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1) Learn MF ensembles with a small number of mea-
surements that are randomly sampled and compute the
predictions and their variance.

2) Choose those predictions with large variance and ac-
tively measure the paths corresponding to them.

3) Learn another MF ensembles with all the available
measurements including those randomly and actively
sampled.

It is clear that, under a given measurement budget, i.e. a
given number of paths to be measured, active inference has
the doubled computational overheads over standard inference
with random sampling due to the twice computations of
MF ensembles. However, we will show in Section V-C that
empirically the extra overheads lead to an improvement on
prediction accuracy by 4%− 8% on our datasets.

B. Progressive Inference

Besides active inference, we also develop a progressive
inference framework for ABW that incorporates the measure-
ment principle of self-induced congestion.

1) ABW Rating by Self-Induced Congestion: As mentioned
in Section III, popular ABW measurement tools such as
pathload [14] and pathchirp [15] are based on the principle
of self-induced congestion the utilization of which enables the
direct rating without knowing the actual value. The idea is that,
by sending a constant-rate flow, each probe performs naturally
a binary test that checks whether the ABW is larger or smaller
than the probe rate, illustrated in Figure 6. Thus, we can set the
probe rate of each flow to one of the quantization thresholds in
τ = {τ1, . . . , τR−1} and according to the responses, determine
between which pairs of thresholds the ABW value is.

Available Bandwidth

probing rate τ

observe
congestions?

ABW > τ ABW < τ
No Yes

Fig. 6. A binary test based on self-induced congestion.

For each path, such rating procedure takes O(logR) probes
in a binary search manner, which is fairly cheap. Moreover,
when performing ABW rating on multiple paths of a network
simultaneously, we can place the binary tests randomly over
time and across paths, instead of carrying continuously a series
of binary tests on the same paths until the exact rating of a
path is reached. In doing so, we may further reduce the impact
of the probe traffic on network usage and the collisions of the
probe traffic on the common links of different paths. While
interesting, we leave the measurement study of this ABW
rating methodology as future work.

2) ABW Inference by Progressive Learning: The above
rating procedure enables to design a progressive learning
framework which can speed up the convergence of the in-
ference. The key is to utilize the fact that each binary test in

a rating measurement returns some partial information of the
form of either xij < c or xij > c which is already usable for
inference. For example, when we find that the rating of the
path from node i to node j is no smaller than 3, i.e., xij > 3,
although we don’t know the exact rating, we can still constrain
the inference system so that it tries to make a prediction of x̂ij
no smaller than 3. Thus, the constraint put on the inference
system is that x̂ij > 3. If such a constraint cannot be satisfied,
we penalize the violation of the constraint, which is done by
modifying the loss function l in MF in eq. 3 to be asymmetric,
i.e. we make an asymmetric loss function for a partial rating
of the form of either xij < c or xij > c, given by

lp(xij , x̂ij) =

{
0 if x̂ij and xij are consistent

l(c, x̂ij) otherwise
(13)

For the example above, our knowledge on xij is that xij > 3.
Thus, if MF makes a prediction of x̂ij no smaller than 3, the
loss function returns 0, because the prediction and the partial
rating are consistent. Otherwise, it returns the loss of l(3, x̂ij).

The progressive learning of MF hence solves the following
minimization problem:

min
∑

ij∈Ωexact

l(xij , x̂ij) +
∑

ij∈Ωpartial

lp(xij , x̂ij), (14)

where Ωexact is the set of exact rating measurements and
Ωpartial is the set of partial rating measurements. Note that
over time, as more probe flows are sent into the network,
more and more partial measurements become exact and move
from Ωpartial to Ωexact. The optimization can be done by the
same SGD algorithm mentioned in Section IV-D1.

The reason why progressive inference converges faster
than standard inference with exact ratings only is that the
inference can already start before a full rating measurement is
completed. For example, node i firstly sends a constant-rate
flow to node j to test whether the rating of the ABW is smaller
than 3, and node j returns a “yes” or “no” response. At the
next time, node i adjusts the probe rate so as to test whether
the rating is larger than 4 or smaller than 2 according to the
response of the previous probe. For progressive inference, node
i can perform an update when receiving a response from node
j, while for standard inference, node i has to wait until it
knows exactly the value of the rating.

Progressive inference is particularly useful when dealing
with dynamic measurements, because we can maintain the
rating information by performing binary tests, each of which
checking alternatively whether the rating has increased or
decreased. Moreover, in our measurement studies on the
PlanetLab network, we observed that some PlanetLab nodes
were configured with constrained maximum packet transfer
rates which were below the ABW of the paths connected
to them. Consequently, we cannot measure the exact ABW
ratings of certain paths, because it requires to send large
traffic at a rate that exceeds the constraints. However, we still
get partial information about those paths, i.e., we know that
the ABW is larger than the constrained rate, which can be
exploited by the progressive inference framework. Note that
progressive inference is not useful for RTT, because RTT can
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be easily obtained using ping-type tools with fairly low costs.
There is thus no partial rating information about RTT that
could be used in a progressive manner.

C. Evaluations
The evaluations of both the active and the progressive

inference framework were performed on the same datasets as
described in Section IV-E.

1) Active Inference: We fixed the measurement budget by
setting k, the number of neighbors to be probed at each node,
as the following: k = 20 for Harvard and HP-S3, 64 for
Meridian and 100 for YouTube. We then performed active
inference as described earlier: first learn MF ensembles with
half of the neighbors of each node randomly selected; then
select actively the other half whose variances are the largest;
learn other MF ensembles with all available measurements.
We compared the RMSEs of active inference and of standard
inference with random neighbor selection, i.e. each node
randomly selects all its k neighbors, shown in Table IV. It
can be seen that active inference achieved about 4% − 8%
improvements over standard inference on different datasets.
Note that while looking small, such improvements are non-
trivial if compared with the requested improvement of 10% in
the Netflix prize.

TABLE IV
RMSE OF ACTIVE AND STANDARD INFERENCE.

Harvard Meridian HP-S3 YouTube
active inference 0.595 0.757 0.521 0.588

standard inference 0.652 0.790 0.566 0.637

2) Progressive Inference: We performed experiments to
highlight the advantage of progressive inference using partial
ratings over standard inference using exact ratings on the
convergence speed. To this end, we ran RMF with progressive
and standard inference respectively on the ABW dataset, HP-
S3. Note that we simulated the ABW measurement using the
pathload strategy whereby the rate of a probe flow is set to
one of the quantization thresholds in τ = {τ1, . . . , τR−1} and
is adjusted according to the feedback of the previous probe.
Thus, each probe flow returns a partial rating of whether the
rating is larger or smaller than a certain value. For progressive
inference, we utilize a partial rating immediately after it is
obtained, whereas for standard inference, we wait until the
exact rating is known which requires O(logR) probes. Figure
7 plots the RMSE with respect to the number of probe flows
sent from each node. It can be seen that the RMSEs of both
progressive and standard inference decrease monotonically
with the number of probe flows and the accuracy improvement
becomes smaller and smaller. Clearly, progressive inference
converges much faster than standard inference. Note also that
progressive inference achieves the same accuracy as standard
inference, because overall the inference in both cases is based
on the same set of rating measurements.

VI. CASE STUDY: LOCALITY-AWARE OVERLAY
CONSTRUCTION AND ROUTING

With the techniques of rating-based network measurement
and inference presented above, the remaining issue is the
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Fig. 7. Comparison on the HP-S3 dataset of progressive inference using
partial ratings and standard inference using exact ratings on the convergence
speed.

usability in Internet applications. There are two questions to
be answered:
• While Section IV-E shows that the inference by various

MF models can achieve at least an accuracy of RMSE
less than 1, it is natural to ask whether such an accuracy
is acceptable for applications.

• It is critical to choose a proper granularity for rating
network paths, because although a finer granularity leads
to more informative measurement, it also means more
measurement overheads which may overweigh the benefit
of exploiting the knowledge of network proximity. Thus,
it is also natural to ask whether more fine-grained ratings
always improve the performance of applications.

To answer these questions, we perform a case study on
locality-aware overlay construction and routing and investi-
gate whether locality-awareness can be achieved by using
inferred ratings of path properties such as RTT and ABW.
More specifically, we consider Pastry [16] and BitTorrent [17]
which are typical structured and unstructured overlay networks
and are known to enjoy the property of locality-awareness.
Both Pastry and BitTorrent rely on an outside program that
acquires network path properties. For example, Pastry uses
measurement tools such as traceroute for hop count or ping
for RTT [16], and BitTorrent uses Vivaldi to infer RTTs [43].
Here, we are interested in knowing whether our MF-based
inference schemes can serve as the outside program in Pastry
and BitTorrent5 and the impact of the rating granularity on
their performance. To simplify the evaluation, we only employ
RMF in this section due to its accuracy and simplicity which
facilitates its deployment in P2P applications.

A. Pastry

Pastry is a classic structured overlay network for the im-
plementation of a DHT where the key-value pairs are stored

5Note that investigating how MF-based inference can actually be incor-
porated in the Pastry and BitTorrent protocols is beyond the scope of this
paper. However, [10], [12] showed that MF can be implemented in a fully
decentralized manner, with the same architecture as Vivaldi [5] which has been
incorporated in BitTorrent [43]. This indicates that our MF-based inference
schemes can be seamlessly used in BitTorrent, with no extra overhead
required. We refer the interested readers to [10], [12] for the details of the
decentralized architecture and implementations of our MF-based inference
schemes.
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in a P2P network in an organized manner so that queries
can be achieved within O(log n) hops of routing, where n is
the number of nodes. Here, we drop the description but refer
the interested readers to [16] for the construction and routing
algorithms of Pastry. We mention that Pastry determines the
best routes by using the proximity knowledge.

In the simulations, we predicted ratings using RMF on the
same datasets and with the same configuration as described
in Section IV-E, except that we varied the rating levels from
R = 2, R = 22,..., to R = 28, instead of R = 5 in the previous
sections. For comparison, we also ran RMF to predict values
of path properties, which is the most fine-grained measure.
We then built the routing tables in Pastry using respectively
no proximity knowledge, inferred ratings, inferred values, as
well as the true measurements in the original datasets. We refer
to Pastry using no proximity knowledge as R = 0 and using
inferred values as R = ∞. Pastry using true measurements
is the ideal case where the best routes can be found at the
cost of O(n2) active measurements. In the implementation of
Pastry, considering that there are at most 2500 nodes in our
datasets, the node Id space is N = 214. Other parameters
are: the base is B = 2, the leaf set size is L = 2B , the
neighbor set size is M = 2B+1, and the routing table size is
T = (logLN,L− 1) = (7, 3).

After construction, we simulated 100, 000 lookup messages,
i.e. queries, which were routed from randomly chosen nodes
with randomly chosen keys. Then, we compared the routing
performance of Pastry under R = {0, 21, . . . , 28,∞} respec-
tively with that of using true measurements. We measured the
routing performance as the average of a routing metric, RTT
for Harvard and Meridian and ABW for HP-S3, of each query
and calculated the ratio between the different cases of R and
the ideal case of using true measurements, called stretch. As
Pastry can find the best routes when using true measurements,
stretch for the routing performance is greater than 1 for RTT
and smaller than 1 for ABW. The closer it is to 1, the better.

Figure 8 shows the stretches of both the routing performance
and the hop count. We make the following observations. First,
the stretch of the hop count is very close to 1, which is
expected because Pastry always produces routes of O(log n)
hops, with or without using the proximity knowledge. Second,
also as expected, the routing performance of using inferred
knowledge is worse than that of using true measurements,
but is better than using no knowledge at all (R = 0), even
for the case of R = 2 which leads to the most coarse-
grained ratings. This shows that network inference of ratings
is accurate enough to be used in Pastry. Third, increasing R
after R reaches 23 or 24 cannot further improve the routing
performance of Pastry. This shows that rating with finer
granularities is not always beneficial for applications, let alone
the extra costs due to more fine-grained measurements. Last,
the routing performance of using inferred values (R =∞) is
a little worse than that of using inferred ratings with R = 24.
This seems to suggest that the inference of property values
was affected by measurement outliers, which further degraded
the performance of Pastry. In contrast, outliers were naturally
filtered out by rating-based measurements.

B. BitTorrent

BitTorrent is perhaps the most popular unstructured overlay
network and is widely used for file sharing [17]. The protocol
adopts a random peer selection procedure which causes large
inter-domain traffic and degrades application performance. It
is well known that these issues can be overcome by intelligent
peer selection with the use of the proximity knowledge [3],
[26], [27].

In the simulations, we inferred ratings and values of path
properties using RMF as described in the above section. Then,
we constructed overlay networks in BitTorrent with a standard
scheme whereby a tracker node randomly proposes to each
peer 50 peers in the network, among which 32 are selected.
Ideally, we would like to connect each peer with those best
performing peers, i.e. shortest for RTT and widest for ABW.
However, such best peer selection strategy leads to the problem
of reachability that some nodes are not reachable by some
other nodes6. Our simulations showed that there could be
10% ∼ 15% of the end-to-end obstructed paths. To overcome
this problem, we came up with a mixed strategy whereby p%
of the peers execute best peer selection and the other ones
execute random peer selection, referred to as best p% peer
selection7. We tested p = {100, 90, 50, 0}, with p = 100 being
essentially the strategy of best peer selection and p = 0 being
random peer selection. Note that the reachability problem is
already avoided when p = 90.

We measured the performance of peer selection by the
average performance of the links between each pair of peers
selected by the peer selection procedure, shown in Figure 9.
It can be seen that the performance of peer selection improves
as more nodes execute the strategy of best peer selection. This
shows that we can reduce download time or avoid congestions
in BitTorrent by exploiting inferred ratings of RTT or ABW.
It can also be seen that, while R = 24 or 25 appear to be
optimal, which is similar to Pastry, the granularity seems to
have less impact on BitTorrent. This is probably due to the
protocol that requires each peer to select 32 peers out of
50 candidates, thus leaving us with limited choices for peer
selection. Note that BitTorrent is particularly concerned with
the performance of peer selection, because chunks of files are
frequently exchanged between direct neighbors.

C. Remarks

Our case study is encouraging, showing that inferred ratings
are accurate enough to be beneficial to applications such as
Pastry and BitTorrent. Empirically, a coarse granularity of
R = 24 appears to be satisfactory for our datasets, which is
acceptable for RTT whose measurement is cheap. However, for

6In an overlay network, the links between nodes are directed. For example,
there may be a link from A to B, because A chooses B as its neighbor.
However, there may not be a link from B to A, because B may not choose
A as its neighbor. Thus, the problem of reachability doesn’t mean that the
overlay network is disconnected. Instead, it means that some end-to-end paths
are obstructed and that packets can only be routed in one direction between
some end nodes.

7An alternative strategy for best p% peer selection is to let each node select
p% best peers and (100− p)% random peers. We tested both strategies and
found that they achieved statistically similar results.
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Fig. 8. Stretch of the routing performance of Pastry, defined as the ratio between the routing metric of Pastry using inferred ratings and of Pastry using true
measurements. Note that R = 0 means that no proximity knowledge is used, and R =∞ means that inferred values are used.
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Fig. 9. Performance of peer selection for BitTorrent, calculated as the average link performance between each pair of selected peers. Note that “true” means
that true measurements are used.

ABW, the improvement by increasing R from 23 to 24 comes
at the cost of more probe flows and thus more overheads,
which may not be considered worthy. In practice, the choice
of R has to take into account not only the performance of
applications but also the measurement budget.

We measured the inference accuracy by RMSE which
reflects the overall accuracy of the prediction for each path.
Such metric is more meaningful for applications where the
inference accuracy of every path is equally important. For the
task of intelligent peer selection where it is only important to
ensure that the selected paths have a high rating, it may not be
worth pushing the metric of RMSE to the limit. This insight
shows that a prediction system should be evaluated from the
applications’ point of view, which highlights the importance
of carrying out case studies on real applications.

Note that the case study focused on the impact of the
accuracy of rating inference and the impact of the granularity
in rating-based network measurement. Thus, we performed
no comparison with other inference approaches, as none can
deal with ratings of different path properties. For example,
Vivaldi [5] infers RTT values by Euclidean embedding and
was already shown to be less accurate than our MF-based
approach when using the same amount of RTT measurements
[12]. Tomography-based approaches [6]–[8] do not work on
non-additive properties such as ABW and require the routing
information of the network which is not available in our
scenarios. In contrast, our MF-based approach is flexible in
dealing with both additive and non-additive properties and

in dealing with both property values and ratings of different
levels, which is a unique feature that distinguishes it from all
previous approaches.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel concept of rating network
paths, instead of measuring values of path properties, and
investigates the inference of ratings by solutions designed
for recommender systems, particularly by a class of matrix
factorization techniques, which were found to work well. The
case study on locality-aware overlay construction and routing
highlights the usability of rating-based network measurement
and inference by Internet applications. These studies reveal
the advantages of ratings: they are informative, have low
measurement cost and are easy to process in applications.

There are several avenues for future work. First, while we
focused, in the case study, on the impact of the inference
accuracy and the rating granularity, we are interested in the
design of new protocols that can incorporate schemes of
network inference of ratings. Second, we wish to apply our
techniques on other inference problems such as traffic matrix
estimation [21] and investigate the benefits of coarse-grained
packet counting for the application of traffic engineering.
In addition, we are also interested in a CDN case study,
whereby users are redirected to nearby servers with good
network performance. A particular benefit of rating-based user
redirection is that load balancing can be naturally achieved by
random server selection among servers with top-rating network
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connections. This can avoid the overuse of a particular server
that has the best connection to a lot of users. This paper has
already evaluated the accuracy of rating prediction on a CDN
(YouTube) dataset, shown in Table III, which highlights the
potentials of the techniques for CDNs. We wish to further
justify the benefit on load balancing by investigating the server
selection models in various CDNs.
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and 1991 respectively. His main research interests
are the application of machine learning techniques to
networking problems, traffic engineering, resilience
and new network architectures. His research unit is

or has been involved in European projects such as mPlane on measurements,
ECODE on cognitive networking, ResumeNet on resilient networking, ANA
on autonomic networking, TOTEM on an open-source toolbox for traffic
engineering, and the E-NEXT European network of excellence. He is a
former chairman of the IFIP Technical Committee (TC6) on Communications
Systems, a former steering committee member of the IFIP Networking
Conference, and an area editor of IEEE Transactions on Network and Service
Management and Elsevier Computer Communications journals. He received
the IFIP Networking 2006 and 2010 Best Paper Awards.


