
Using AR(I)MA-GARCH models for
improving the IP routing table update

Wouter Tavernier∗, Dimitri Papadimitriou†, Didier Colle∗, Mario Pickavet∗ and Piet Demeester∗
∗ Ghent University, IBCN-IBBT, INTEC, Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium

Email: {wouter.tavernier, didier.colle, mario.pickavet, piet.demeester}@intec.ugent.be
† Alcatel-Lucent Bell, Copernicuslaan 50, B-2018 Antwerpen, Belgium

Email: dimitri.papadimitriou@alcatel-lucent.be

Abstract—When an IP router updates its routing table, e.g.,
upon failure detection, network traffic is lost as long as the
routing entries affected by the failure are not updated. In this
paper, we model and predict the network traffic passing through
an IP backbone router and define a dynamic heuristic in order to
reduce the packet loss resulting from such routing tables entries
update events. We use the state-of-the-art AutoRegressive Inte-
grated Moving Average (ARIMA) - Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) model to characterize
and predict the network traffic. We benchmarked the resulting
models with a heuristic in a simulation environment and show
that a significant decrease of packet loss can be obtained for a
given computational cost.

I. INTRODUCTION

Many techniques have been developed to help networks
reducing their recovery time resulting from network fail-
ures. Fast failure detection techniques ensure detection times
in the order of milliseconds, for example, using hardware-
based loss-of-signal detection or software-based Bidirectional
Failure Detection (BFD, see [1]). Recovery techniques such
as, Generalized Multi-Protocol Label Switching (GMPLS)-
based segment protection and restoration ([2]), or plain IP
Fast ReRoute (FRR, [3]), aim at minimizing the duration of
traffic delivery disruption caused by link or node failure(s)
until the network reconverges on the new topology. Common
to all these techniques is their focus on recovery time and
availability of a (loop free) backup path.

While the backup path can be known (pre-calculated) at the
moment of failure detection, the low-level update of routing
entries at the IP level can still take more than 1 second in
IP backbone networks (see [4]). The study conducted in [5]
was the first to show that in simplified network conditions1, a
significant decrease of packet loss can be obtained when the
order of updating the routing table entries in an IP router is
optimized based on measured network traffic statistics. The
main idea of this work relied on ensuring that higher bitrate
traffic flows are updated earlier than lower bit-rate flows (i.e.,
the corresponding routing table entries are updated earlier).
The study was performed under the assumptions that network
traffic behaves persistent during the process of the router
update (for a period of 1 second) using generated network
traffic using Pareto-distributions.

1persistent network traffic assumption during the routing table update

In this paper, we show (using MAWI traces, see Section V)
that real network traffic of an IP backbone network does fluc-
tuate during periods of 1 second. Therefore, a more accurate
network traffic pattern is needed to model and predict network
traffic during the process of updating IP routing entries. In
addition, heuristics are defined which use the network traffic
models to dynamically optimize: i) the update order of the
routing entries, and ii) the low-level router process quantum
with the goal of decreasing packet loss the resulting packet
loss.

The paper is structured as follows. In Section II, we briefly
recapitulate the structure of the IP routing table update pro-
cess. In Section III, we describe AutoRegressive Integrated
Moving Average (ARIMA) - Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) models for network
traffic modeling and prediction. Next, the first part of Section
IV formalizes the concepts of recovery time and packet loss
under dynamic network traffic conditions in the context of an
IP routing table update. In the second part of this section,
we use these concepts to formulate a dynamic heuristic that
minimizes the resulting packet loss. In Section V, we analyze
the dynamics of IP traffic in backbone networks, and validate
the network traffic models of Section III. Next, we measure
the resulting packet loss and recovery time using the defined
heuristics in combination with modeled network traffic. The
computational cost of the proposed scheme is characterized
in Section VI. Conclusions together with future work are
formulated in Section VII.

II. IP ROUTING TABLE UPDATE

We first describe how an IP router updates its routing
table in order to determine what aspects can be optimized to
reduce the resulting packet loss. In an IP backbone network
operating Link-State (LS) Interior Gateway Protocols (IGP)
such as OSPF ([6]), a router detecting a link failure originates
a LS Update (LSU) message. This message, containing LS
Advertisement(s) (LSA) describing the topological link state
change(s), is reliably disseminated in the network (flooding).
At every router receiving the LSU, the following three-step
process executes (see Figure 1):

1) Re-computation of the shortest path tree (1) using
the topological information stored in the updated LS
DataBase (LSDB);

978-1-4244-7286-4/10/$26.00 c©2010 IEEE 1

LFIB

Forwarding

Line card

SPT computation

LS database

RIB

FIB

Routing engine

Switching fabric
LFIB

Forwarding

Line card

3

1

2a

2b

3

LS PDU LS PDU

Data

packet
Data

packet

Fig. 1. The router update process

2) Update of the central Routing Information Base (RIB)
and the central Forwarding Information Base (FIB)
based on the Shortest Path Tree (SPT) computation (2a
and 2b).

3) Distribution of central FIB towards the local FIB (LFIB)
on line cards (3).

The SPT recomputation is usually performed in its entirety
and takes about 30 to 50 µs per IGP destination prefix. Time
optimizations can be obtained using incremental SPF (iSPF)
algorithms (see [7]). The second step consists of updating
the central RIB and FIB, using the calculated shortest paths.
This uses about 50 to 100 µs per destination prefix (see [4]).
Typically, this step happens in (pseudo-) parallel with step 3,
which is about distributing the central FIB entries towards the
line cards’ LFIB. Running step 2 and 3 in (pseudo-) parallel,
means that they both use the central CPU in interleaved
time slots, swapping between both processes for updating and
distribution. This process can be compared to the usual process
scheduling in time-sharing Operating Systems (OS) such as
Linux, whereas commercial routers make use of a hard real
time OS. The consecutive time the central CPU is spending
to perform central RIB/FIB entries update(s) or distribution
of FIB entries towards the line card(s) is determined by
the quantum of the swapping process. The quantum time
can typically be configured between 10 and 800 ms. Similar
quantum time values were found in [4]. In practice, the process
consists of a series of update-distribution batches, where in a
first quantum a fixed set of prefixes are updated towards the
central RIB/FIB, followed by a quantum where the same set
of prefixes is distributed towards the LFIBs.

By default, the update of RIB/FIB entries (i.e., IGP prefixes)
and their distribution are not ordered. Moreover, the size of the
batches is determined by the router process quantum, usually a
pre-configured constant number over the entire update process.
Therefore, the heuristic defined in Section IV-B basically tries
to sort the routing entries in decreasing bitrate order on the
moment of the update, as well as optimizing the sizes of the
series of update-distribution batches.

III. NETWORK TRAFFIC MODELS

Using network monitoring techniques, the volume of traffic
per IP destination prefix (corresponding to the routing entry)
can be measured for a given time interval. Network traffic
aggregation thus happens at two levels: i) at the prefix-level
(smaller subnets result into more aggregation) and ii) at the
time-level (larger time intervals result into more aggregation).

If we want to ensure that the router update process re-orders
RIB/FIB entries according to their volume (integrated bitrate),
we need to make sure that the associated traffic volumes are
correctly estimated. In Section V-B, we show that network
traffic heavily fluctuates during periods of 1 second, such that
we can no longer assume that traffic behaves exactly as just
before the update process as assumed in [5]. Therefore, this
section describes two network traffic models which can be
combined to model and predict network traffic within short
time scale (sub-second). Using these models, we ensure that
the technique described in Section IV-B performs the best
possible estimation in order to reduce packet loss.

A. Auto-Regressive (Integrated) Moving Average model

The AutoRegressive Moving Average ARMA(p, q) model
is defined as follows:

yt =

p∑
i=1

αiyt−i +

q∑
j=1

βjwt−j + wt

This formula combines two techniques: i) autoregression,
which reflects the fact that a prediction is based on the signal
itself (using p previous values) referring to the first term, and
ii) moving averages, reflected by q terms of the white noise
series wt (with E(wt) = 0 and V ar(wt) = σ2) which is
put through a linear non-recursive filter determined by the
coefficients αi (weighted average). The autoregressive part
directly reflects the Short Range Dependence (SRD) of a time
series. Whereas these models have been successfully applied
to model network traffic (e.g., [8]), they are also known to
be unable of modeling non-stationary time series. Stationarity
implies that the probability distribution characterizing the time
series mean and variance remains constant over time.

Some non-stationary time series can be made stationary
by one or more levels of differencing2. Once the resulting
differenced time series is stationary, an ARMA(p, q) model
can subsequently be fit and predictions can be made by
integrating the predictions back. The resulting model of this
approach is called the AutoRegressive Integrated Moving Av-
erage (ARIMA) model. The resulting model including the
lag operator L3 for ARIMA(p, d, q) is defined as follows
(d referring to the number of levels of differencing):

(1−
p∑

i=1

αiL
i)(1− L)dyt = (1 +

q∑
j=1

βjL
j)wt

2A differenced time series yt generates a new time series of differences
zt = yt − yt−1

3applying lag operator L on yt generates yt−1, and a power i of L defines
a similar recursive process of the order i

B. Generalized Autoregressive Conditional Heteroskedasticity
traffic model

The ARIMA model cannot capture the multifractality which
has been observed in some network traffic traces. For this
reason, the Multifractal Wavelet model (MWM, [9]) has
been introduced. However, while the MWM model can cap-
ture short timescale multifractality, it cannot predict traffic.
For this purpose, the work of [10] introduces the ARIMA
- Generalized AutoRegressive Conditional Heteroscedastic-
ity (GARCH) model, a non-linear time series model which
combines the linear ARIMA model (with constant variance)
with conditional variance GARCH-model (see [11]). The term
”conditional” implies an explicit dependence of the variance
of the noise/innovation series wt from the ARIMA model on
a past sequence of observations. Formally, a GARCH(r, s)
model for the conditional variance σ2 of the innovation series
wt follows an ARMA(p = r, q = s) model of the following
form:

σ2
t =

r∑
i=1

γiσ
2
t−i +

s∑
j=1

ωjw
2
t−j + wt

where, r and s are positive integers.

IV. PACKET LOSS MINIMIZATION

Given a network traffic model which is able to capture and
predict the traffic behavior during the update of IP routing
entries upon recovery, the goal is now to use this information
to formulate a packet loss minimizing heuristic. Therefore, we
first recapitulate and formalize the concepts of the recovery
time and packet loss associated to a routing entry.

A. Recovery time and packet loss

Given the batch structure of the IP router update process
(see Section II), all traffic flows directed to a given destination
address are recovered when the following conditions are met:
i) the IGP routing entry for the prefix including that destination
address is updated and stored in the central RIB and FIB,
and ii) the batch number bi that comprises this updated entry
is distributed towards the LFIBs on the line cards. Thus,
assuming a fixed batch size of xu (number) routing entries
and a given order of entries, the recovery time of a flow fi is
characterized by the following formula:

r(fi) = bixu(tu + td) + (2bi − 1)ts

Here, tu refers to the update time for a single IGP routing
entry, td to the distribution time for a single entry, and ts
to the swapping time interval between an update and a batch
distribution operation. In addition, we can define the Earliest
Recovery Time (ERT) possible for a flow fj , j referring to the
waiting position of the flow at time t, as follows:

ERT (fj , t) = t+ j(tu + td) + ts

The ERT is the update time of the smallest batch including
all IGP routing entries updated before the considered flow

together with the considered flow. Indeed, in this situation only
one swapping time interval is needed (separating the update
and distribution batch) together with the time needed to update
and distribute all prefixes comprised within the batch.

Packet loss occurs for network traffic flows as long as their
corresponding routing entries are not updated and distributed
on line cards. The loss resulting from the recovery of flow fi
relates to its bitrate, br(fi), through the following formula:

loss(fi) =

∫ r(fi)

0

br(fi)dt

B. Packet minimization heuristic

Building further on the heuristic from [5], we can formu-
late a heuristic that takes into account both flow ordering
and batch size so as to minimize the packet losses. For
this purpose, consider the following scenario. We denote by
Fn = f1, . . . , fn the set of traffic flows affected by the failure,
and by bcurrent = (fi, . . . , fi+s) the set of flows for which the
corresponding IGP routing entries still need to be updated4.
In this context, we have two possible choices when in the
middle of the ordered process of updating the routing entries
(associated to the set of flows Fn) within our current batch
bcurrent:

1) Extension: extend the current batch with the IGP routing
entry associated to the next flow fi+s+1;

2) Splitting: terminate the current batch and put the IGP
routing entry associated to the next flow into a new
update-distribution batch.

We can compare the additional cost of extension vs. the
additional cost of finishing the update-distribution batch to
guide us into the decision above. By defining tbcurrent as the
starting time of the current batch bcurrent, the extension cost
for this batch ec(bcurrent) can be formulated as follows:

ec(bcurrent) =

i+s∑
j=i

∫ b

a

br(fj , t)dt

with a = ERT (fj , tbcurrent) and b = ERT (fi+k, tbcurrent)
+ (i + s − j + 1)(tu + td). The formula expresses the fact
that, by extending the current batch, the recovery time of
every IGP routing entry comprised in the current batch will
result into an additional delay compared to the minimal delay
it can experience (given the position of that entry in the
current batch). The minimal delay an entry can experience
is determined by the ERT, i.e., the time elapsing for an entry
positioned as the last one in an update quantum having no
earlier update quanta. This additional delay, when multiplied
with the associated bitrate, allows deducing the additional loss
caused by the extension of the update-distribution batch. For
example, if the routing entry associated to the first flow fi
was already delayed by s update times tu (as this entry was
not directly distributed but put in the same batch as the s next
entries ranging from i to i + s), extending the current batch

4The IGP routing entries for the prefixes corresponding to the flows prior
to fi have already been updated in an ordered manner (from f1 to f(i−1))

by one element (to reach i+s+1 elements) further delays the
recovery time of the entry i. On the contrary, the recovery of
the last entry i + s of the current batch will only be delayed
by one update time tu in case of extending the current batch.

On the other hand, terminating the current batch has also
an associated cost, as it will introduce additional delay for the
coming flows, resulting from the additional swapping cost.
This termination condition can be formulated as follows:

finbcurrent =
∑

fj /∈bcurrent

∫ ERT (fj ,tbcurrent)+2ts.

ERT (fj ,tbcurrent)

br(fj , t)dt

Our configuration strategy now consists in identifying the
action with the least associated cost. The overall algorithm can
be expressed as follows:

1) Add all flows to the working set
2) Sort all flows in the working set in decreasing order of

their current cumulative loss cumloss(fj , tcurrent)
3) Compute both extension and splitting cost

• If no current batch exists (routing entry associated
to the first flow), then create a batch and add this
routing entry into this newly created batch.

• Otherwise:
– If the extension cost is smaller than the splitting

cost, then add the corresponding routing entry in
the sorted list to the current batch;

– Otherwise, create a new batch and add the cor-
responding routing entry into this newly created
batch.

4) Remove the added flow from the working set
5) Repeat the procedure from step 2 until the working set

is empty

V. EXPERIMENTAL RESULTS

In the previous section, theoretical foundations have been
developed to model: i) the IP router update process, and ii) the
network traffic flowing through the router. Both aspects were
used to formulate a heuristic that is able to reduce packet loss
during the process of updating the routing table entries.

In this section, real network traces are used to evaluated
the performance gain (i.e., packet loss decrease) obtained by
means of the proposed heuristic. First, we detail the overall
methodology and experimental environment; then, we analyze
the dynamic properties of network traffic and apply the models
of Section III. At last, the gain of the overall procedure is
measured.

A. Methodology and environment

A set of PCAP traces obtained in December 2009 was
taken from the MAWI project (see [12]). These traces were
processed, using Python scripting, at three time interval levels
(100 ms, 500 ms and 1000 ms), referred to as time bins, and at
three spatial levels (/8, /16 and /24 subnetworks) with respect
to their aggregated traffic volume, i.e., aggregated packet sizes
per time-bin per prefix. Next, the resulting traffic time series

Monitoring data

(real time)

Prediction model

Heuristic

Packet loss
Recovery

time

Prediction

performance

NMSE

Real reference

data (incl. future

measurements)

H
eu

ris
tic

 b
en

ch
m

ar
ki
ng

Fig. 2. Benchmarking process

were analyzed and fit to one of the described traffic models
using R software ([13]). The resulting modeled data was used
as input for the heuristic implemented in Python/C++, such
that we could decrease the packet loss resulting from the
update of the affected routing entries. All the experiments ran
on a regular desktop computer equipped with an AMD Athlon
2.7 GHz CPU and 4 GB RAM. The entire process is shown
in Section 2.

B. Network traffic analysis

The output of a processed PCAP file consists of a set of
prefixes with associated traffic volume per time-bin (multiple
parallel time series). On average, we counted about 140K /24
subnets, or 14K /16 subnets or 0.2K /8 subnets per trace.
To analyze the dynamics of the traffic, we measured the
persistence of active flows over time. A flow is considered
as active when at a certain point in time, a non-zero volume
is associated to it. We analyzed the percentage of active
flows that remain active over the next time bin for several
combinations of aggregation levels i.e., time bin sizes of 100
ms, 500 ms and 1000 ms together with /8, /16 and /24 subnets.

The analysis showed that for /16 and /24 subnets, for all
time-bin sizes, the percentage of flows that remain active
during two consecutive time bins is about 50 percent on
average. Figure 3 shows the number of active flows at every
time bin (solid black line), and the number of flows that
remain active during the next time bin (dotted line) when using
/24 subnets and a bin size of 1000 ms. Using /8 subnets,
this percentage is on average 90. Table I gives the average
values at other aggregation levels. The consequence of the
high fluctuation in activity can be formulated as follows: one
can no longer assume that the volume statistics of the moment
just before a routing table update will remain the same during

0 90 180 270 360 450 540 630 720 810 900
Time (time bin number)

0.0

583.5

1167.0

1750.5

2334.0
N

u
m

b
e
r

o
f

fl
o
w

s
Active flows per time bin

Fig. 3. The number of active and persistent flows using /24 subnets and
1000 ms time bins

the routing table update. For this reason, we fit network traffic
to network traffic models discussed earlier and use it to predict
their behavior for the next time bin.

C. Network traffic fitting and prediction

Four time-series modeling techniques were tested to fit and
predict the referred MAWI-traces: i) ARMA, ii) ARIMA, iii)
ARMA-GARCH, and iv) ARIMA-GARCH. It is clear from
Section III that these models can have different orders as
determined by their parameters p, q, d and r, s.

The main task in automatic ARIMA forecasting is to select
an appropriate model order. To automate the process of optimal
parameter selection, we used the order selection strategy of
[14] for ARMA and ARIMA models restricted to maximum
values of 10. The strategy selects those parameters which
minimize the Akaike’s Information Criterium (AIC) among
all fitting models. Once the best parameters are selected,
Maximum Likelihood Estimators (MLE) are computed to
deduce the best fitting coefficients for the ARMA and ARIMA
models (see [14]). The lowest value for the d parameter of
the ARIMA model, resulting into a stationary time series,
according to the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test for stationarity5, is then selected (see [14]).

For the GARCH-model, the values of parameters r = 1
and s = 1 were chosen to reduce the resulting computational
complexity, as well as to avoid non-optimizable parameter val-
ues due to lack of sufficient information6. The GARCH(1, 1)-
coefficients were estimated using the Quasi-Maximum Likeli-
hood Estimator (QMLE) (see [15]).

For one MAWI trace, the fitting procedure at all aggregation
levels, takes about 20 hours on the referred computer. How-

5The KPSS test assesses the null hypothesis that a univariate time series
trend is stationary against the alternative that it is a non-stationary unit-root
process

6Not all time series corresponding to the volumes of a given prefix are
dense enough. Some series have more zero values than others, resulting into
non-optimizable parameters due to singular Hessian matrices.

ARMA ARIMA ARMA-GARCH(1,1) ARIMA-GARCH(1,1)
Prediction model

0.00015

0.00016

0.00017

0.00018

0.00019

0.00020

E
rr

o
r

fittingresults

NMSE

Fig. 4. NMSE of prediction models

ever, in the context of the router update, this process can be
executed in background.

Figure 4 shows the average Normalized Mean Square Errors
(NMSE) of fitting the models to the set of MAWI traces. The
NMSE is defined as follows7:

NMSE =

∑
n(ŷ(x)− y(x))2∑
n(y(x)− µT)2

.

Smaller NMSE values correspond to better fitting models.
As expected, the ARIMA-GARCH(1, 1) model shows on aver-
age the best performance, followed by ARMA-GARCH(1, 1),
ARIMA, and ARMA model. More aggregation, either by
using larger time bins or using smaller subnetworks (larger
netmasks), leads to better fitting models; however, the relative
gain between the techniques remains the same. From Figure 4,
one can also observe that all prediction techniques are rather
close in predictive performance. Using the same figure, the
improvement resulting from the GARCH(1,1) model can also
be delimited compared to the AR(I)MA model.

D. Packet loss simulation

Given the data of the prediction models from the previous
subsection, the gain of the heuristic described in Section
IV-B, can now be evaluated. Figure 5 shows the packet
loss resulting from using either the default random update
algorithm (unsorted routing entry updates using batches of
100 prefixes) vs. the described optimization heuristic using
any of the described prediction models using /24 subnets
and time bins of 100 ms. As a simpler benchmark, we also
included a simple update described in [5] (mentioned as ”sort
on latest RUP”) which relies on the latest measured volume
data and updates them according to decreasing volume. This
figure makes clear that on average, a decrease of 18 percent
packet loss can be obtained using the heuristic with any of
the proposed prediction techniques compared to the default
random routing table update, and about 8 percent packet loss

7ŷ(x) referring to the predictions, y(x) referring to the actual values

TABLE I
AVERAGE NUMBER OF ACTIVE AND PERSISTENT FLOWS

Subnet length (/x): Binsize (ms): Average number of active flows per time bin: Average number of persistent flows:
8 100 100 90
8 500 118 108
8 1000 125 117
8 15000 204 -

16 100 390 170
16 500 900 537
16 1000 1210 720
16 15000 14412 -
24 100 517 213
24 500 1410 790
24 1000 2013 1005
24 15000 143203 -

de
fa

ul
t R

UP

so
rt

on
 la

te
st

 R
UP ARM

A

+
he

ur
ist

ic

ARIM
A

+
he

ur
ist

ic

ARM
A-G

ARCH(1
,1

)

+
he

ur
ist

ic

ARIM
A-G

ARCH(1
,1

)

+
he

ur
ist

ic

Prediction model + heuristic

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

P
a
ck

e
t

lo
ss

 (
1
0
e
5
 b

y
te

s)

packet loss

Fig. 5. Average packet loss vs Prediction model and heuristic

compared to sort on latest RUP. Whereas it is obvious that
the default behavior of updating the routing entries for IGP
prefixes in random order is constant independently of the
traffic prediction model, it is surprising that the specific choice
of the prediction model –in combination with the optimization
heuristic– has relatively low influence on the packet loss. This
observation can be explained from the fact that the difference
between NMSE of the prediction models is rather small.

Whereas previous discussion makes clear that on average8,
significant decreases in packet loss can be obtained, it is
important to determine the worst case: is it possible that the
default random update shows in some case(s) lower packet
loss than the combination of prediction and the optimization
heuristic. This question is answered by the results obtained
in Figure 8. This figure illustrates that a normal distribution
was obtained around the mentioned averages in packet loss,
with minimal and maximal improvements of respectively 5
and 35 percent in decrease of packet loss compared to the
default routing table update. We found no executions where
the default behavior is better than the suggestion solution.

8over 1000 iterations

de
fa

ul
t R

UP

so
rt

on
 la

te
st

 R
UP ARM

A

+
he

ur
ist

ic

ARIM
A

+
he

ur
ist

ic

ARM
A-G

ARCH(1
,1

)

+
he

ur
ist

ic

ARIM
A-G

ARCH(1
,1

)

+
he

ur
ist

ic

Prediction model + heuristic

0.0

0.1

0.2

0.3

0.4

0.5

R
e
co

v
e
ry

 t
im

e
 (

s)

recoverytime

Fig. 6. Average recovery time vs Prediction model and heuristic

Similar distributions were found at other time and spatial
aggregation levels for which the average decrease of packet
loss is as depicted in Figure 7. The results illustrate that using
a prediction model in combination with the described heuristic
makes most sense at low aggregation levels, where up to 18
percent (average) decrease in packet loss can be achieved.

Figure 6 makes clear that minimizing the packet loss is not
going hand in hand with reduction of the total recovery time
(i.e., the time when all routing table entries are updated and
loaded on line cards’ LFIBs). This can be understood from
the fact that the optimization heuristic sometimes introduces
more but smaller batches, giving priority to certain routing
entries. Smaller batches for the same number of prefixes lead
to a larger number of batches, which result into more process
swapping, which lead to lower total recovery times. This trend
can be observed from Figure 5.

VI. COMPUTATIONAL COST OF THE PROCEDURE

The execution of the proposed procedure can be classified
as relatively intensive from a computational perspective. How-
ever, many parts can run offline or in background. Fitting
ARMA and ARIMA models to time series samples have

100 500 1000
Binsize (ms)

0.00

0.05

0.10

0.15

0.20
A

v
e
ra

g
e
 d

e
cr

e
a
se

 i
n
 p

a
ck

e
t

lo
ss

 (
p
e
rc

e
n
ta

g
e
)

Packet loss decrease vs. default router update using 100 prefix batches

/8 subnets
/16 subnets
/24 subnets

Fig. 7. Average packet decrease vs. default router update process over 1000
iterations

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage decrease in packet loss

0

50

100

150

200

250

N
u
m

b
e
r

o
f

sa
m

p
le

s

Fig. 8. Distribution of decrease in packet loss (subnet length 24 and binsize
100 ms)

a computational complexity which is bounded by O(m3T),
where T is the length of the time series sample, and m =
max(p, q + 1). Fitting GARCH models reduces to hard non-
linear optimization problems. To the knowledge of the authors
there is no clear bound to the computational complexity of
fitting these models for arbitrary (r, s) values.

The computation of the described optimization heuristic
involves operations which are bounded by O(n log n) during
every step split/extension-step, caused by the need for real-
time sorting. While this results in a heavy procedure, it can
be drastically reduced by using hardware-implemented sorting
algorithms which reduce to constant time sorting for a given
number of values (see [16]).

VII. CONCLUSION AND FUTURE WORK

In current routers, the update of the routing table entries can
take up to one second. In this paper, we have shown that a sig-
nificant amount of packet loss can be avoided using a dynamic

heuristic which takes into account a time-dependent model
of monitored network traffic. We used AR(I)MA-GARCH
models to characterize traffic and showed that significant
packet loss decreases can be obtained, varying from 18 percent
on /24 subnetworks using 100 ms time bins, to 2 percent using
1000 ms bins. Figure 8 provides an evidence that in some
cases even larger gains can be obtained. In general, we may
conclude that shorter time aggregation and smaller subnets
(larger netmasks) lead to larger improvements.

ACKNOWLEDGMENT

This work is supported by the European Commission (EC)
Seventh Framework Programme (FP7) ECODE project (Grant
n223936).

REFERENCES

[1] D. Katz and D. Ward, “Bidirectional Forwarding Detection,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-bfd-base-08, Mar. 2008,
work in progress.

[2] L. Berger, I. Bryskin, D. Papadimitriou, and A. Farrel, “GMPLS Seg-
ment Recovery,” RFC 4873 (Proposed Standard), Internet Engineering
Task Force, May 2007.

[3] M. Shand, “IP Fast Reroute Framework,” Internet Engineering Task
Force, Internet-Draft draft-ietf-rtgwg-ipfrr-framework-08, Feb. 2008,
work in progress.

[4] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving
sub-second igp convergence in large ip networks,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 3, pp. 33–44, July 2005.

[5] W. Tavernier, D. Papadimitriou, D. Colle, M. Pickavet, and P. Demeester,
“Optimizing the ip router update process with traffic-driven updates,” in
DRCN 2009, Washington D.C., 2009.

[6] J. Moy, “OSPF Version 2,” Internet Engineering Task Force, RFC 2328,
Apr. 1998.

[7] J. M. McQuillan, I. Richer, and E. C. Rosen, “An overview of the new
routing algorithm for the arpanet,” SIGCOMM Comput. Commun. Rev.,
vol. 25, no. 1, pp. 54–60, 1995.

[8] S. Basu, A. Mukherjee, and S. Klivansky, “Time series models for
internet traffic,” in INFOCOM ’96. Fifteenth Annual Joint Conference
of the IEEE Computer Societies. Networking the Next Generation.
Proceedings IEEE, vol. 2, 24-28 1996, pp. 611 –620 vol.2.

[9] R. Riedi, M. Crouse, V. Ribeiro, and R. Baraniuk, “A multifractal
wavelet model with application to network traffic,” Information Theory,
IEEE Transactions on, vol. 45, no. 3, pp. 992 –1018, apr 1999.

[10] B. Zhou, D. He, and Z. Sun, “Traffic predictability based on arima/garch
model,” in Next Generation Internet Design and Engineering, 2006. NGI
’06. 2006 2nd Conference on, 0-0 2006, pp. 8 pp. –207.

[11] T. Bollerslev, “Generalized autoregressive conditional heteroskedastic-
ity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, April 1986.

[12] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the
wide project,” in ATEC ’00: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2000, pp. 51–51.

[13] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2009, ISBN 3-900051-07-0.

[14] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting:
the forecast package for r,” Monash University, Department of Econo-
metrics, Monash Econometrics Working Papers 6/07, Jun. 2007.

[15] T. Bollerslev and J. Wooldridge, “Quasi-maximum likelihood estima-
tion and inference in dynamic models with time-varying covariances,”
Econometric Reviews, vol. 11, no. 2, pp. 143–172, 1992.

[16] Y.-H. Tseng and J.-L. Wu, “On a constant-time, low-complexity winner-
take-all neural network,” Computers, IEEE Transactions on, vol. 44,
no. 4, pp. 601 –604, apr 1995.

